首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Finite-range sensing and communication are factors in the connectivity of a dynamic mobile-robot network. State estimation becomes a difficult problem when communication connections allowing information exchange between all robots are not guaranteed. This paper presents a decentralized state-estimation algorithm guaranteed to work in dynamic robot networks without connectivity requirements. We prove that a robot only needs to consider its own knowledge of network topology in order to produce an estimate equivalent to the centralized state estimate whenever possible while ensuring that the same can be performed by all other robots in the network. We prove certain properties of our technique and then it is validated through simulations. We present a comprehensive set of results, indicating the performance benefit in different network connectivity settings, as well as the scalability of our approach.   相似文献   

2.
This paper proposes a nonlinear synchronization controller for a swarm of unicycle robots performing a cooperative task, i.e., following a desired trajectory per robot while maintaining a prescribed formation. The effect of communication between robots is analyzed and several network topologies are investigated, e.g., all‐to‐all, ring type, undirected, among others. The stability analysis of the closed loop system is provided using the Lyapunov method. Experiments with four unicycle robots are presented to validate the control law and communication analysis. Accumulated errors over the experiment time are presented in order to determine which topology is most efficient.  相似文献   

3.
When multiple robots perform tasks in a shared workspace, they might be confronted with the risk of blocking each other’s ways, which will lead to conflicts or interference among them. Planning collision-free paths for all the robots is a challenge for a multi-robot system, which is also known as the multi-robot cooperative pathfinding problem in which each robot has to navigate from its starting location to the destination while keeping avoiding stationary obstacles as well as the other robots. In this paper, we present a novel fully decentralized approach to this problem. Our approach allows robots to make real-time responses to dynamic environments and can resolve a set of benchmark deadlock situations subject to complex spatial constraints in a shared workspace by means of altruistic coordination. Specifically, when confronted with congested situations, each robot can employ waiting, moving-forwards, dodging, retreating and turning-head strategies to make local adjustments. Most importantly, each robot only needs to coordinate and communicate with the others that are located within its coordinated network in our approach, which can reduce communication overhead in fully decentralized multi-robot systems. In addition, experimental results also show that our proposed approach provides an efficient and competitive solution to this problem.  相似文献   

4.
A team of small, low-cost robots instead of a single large, complex robot is useful in operations such as search and rescue, urban exploration etc. However, performance of such a team is limited due to restricted mobility of the team members. We propose solutions based on physical cooperation among mobile robots to improve the overall mobility. Our focus is on the development of the low level system components. Recognizing that small robots need to overcome discrete obstacles, we develop specific analytical maneuvers to negotiate each obstacle where a maneuver is built from a sequence of fundamental cooperative behaviors. In this paper we present cooperative behaviors that are achieved by interactions among robots via un-actuated links thus avoiding the need for additional actuation. We analyze the cooperative lift behavior and demonstrate that useful maneuvers such a gap crossing can be built using this behavior. We prove that the requirements on ground friction and wheel torques set fundamental limits for physical cooperation. Using the design guidelines based on static analysis we have developed simple and low cost hardware to illustrate cooperative gap crossing with two robots. We have developed a complete dynamic model of two-robot cooperation which leads to control design. A novel connecting link design is proposed that can change the system configuration with no additional actuators. A decentralized control architecture is designed for the two-robot system, where each robot controls its own state with no information about the state of the other robot thus avoiding the need of continuous communication between the two robots. Simulation and hardware results demonstrate a successful implementation with the gap crossing example. We have analytically proved that robot dynamics can be used to reduce the friction requirements and have demonstrated, with simulations, the implementation of this idea for the cooperative lifting behavior.
Jonathan LuntzEmail:
  相似文献   

5.
In this work we consider the problem of controlling a team of micro-aerial vehicles moving quickly through a three-dimensional environment while maintaining a tight formation. The formation is specified by shape vectors which prescribe the relative separations and bearings between the robots. To maintain the desired shape, each robot plans its trajectory independently based on its local information of other robot plans and estimates of states of other robots in the team. We explore the interaction between nonlinear decentralized controllers, the fourth-order dynamics of the individual robots, time delays in the network, and the effects of communication failures on system performance. Simulations as well as an experimental evaluation of our approach on a team of quadrotors suggests that suitable performance is maintained as the formation motions become increasingly aggressive and as communication degrades.  相似文献   

6.
In navigation that involves several moving agents or robots that are not in possession of each other's plans, a scheme for resolution of collision conflicts between them becomes mandatory. A resolution scheme is proposed in this paper specifically for the case where it is not feasible to have a priori the plans and locations of all other robots, robots can broadcast information between one another only within a specified communication distance, and a robot is restricted in its ability to react to collision conflicts that occur outside of a specified time interval called the reaction time interval. Collision conflicts are resolved through velocity control by a search operation in the robot's velocity space. The existence of a cooperative phase in conflict resolution is indicated by a failure of the search operation to find velocities in the individual velocity space of the respective robots involved in the conflict. A scheme for cooperative resolution of conflicts is modeled as a search in the joint velocity space of the robots involved in conflict when the search in the individual space yields a failure. The scheme for cooperative resolution may further involve modifying the states of robots not involved in any conflict. This phenomenon is characterized as the propagation phase where cooperation spreads to robots not directly involved in the conflict. Apart from presenting the methodology for the resolution of conflicts at various levels (individual, cooperative, and propagation), the paper also formally establishes the existence of the cooperative phase during real‐time navigation of multiple mobile robots. The effect of varying robot parameters on the cooperative phase is presented and the increase in requirement for cooperation with the scaling up of the number of robots in a system is also illustrated. Simulation results involving several mobile robots are presented to indicate the efficacy of the proposed strategy. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
This paper addresses the control issue for cooperative visual servoing manipulators on strongly connected graph with communication delays, in which case that the uncertain robot dynamics and kinematics, uncalibrated camera model, and actuator constraint are simultaneously considered. An adaptive cooperative image‐based approach is established to overcome the control difficulty arising from nonlinear coupling between visual model and robot agents. To estimate the coupled camera‐robot parameters, a novel adaptive strategy is developed and its superiority mainly lies in the containment of both individual image‐space errors and the synchronous errors among networked robots; thus, the cooperative performance is significantly strengthened. Moreover, the proposed cooperative controller with a Nussbaum‐type gain is implemented to both globally stabilize the closed‐loop systems and realize the synchronization control objective under the existence of unknown and time‐varying actuator constraint. Finally, simulations are carried out to validate the developed approach.  相似文献   

8.
This paper proposes a decentralized motion planning algorithm for multiple cooperative robots subject to constraints imposed by sensors and the communication network. It consists of decentralized receding horizon planners that reside on each vehicle to navigate to individual target positions. A routing algorithm which modify the network topology based on the position of the robots and the limited range of transmitters and receivers, enables to reduce the communication link failures. A comparative study between the proposed algorithm and other existing algorithms is provided in order to show the advantages especially in terms of traveling time and communication link failure.  相似文献   

9.
This study presents a cohesive configuration controller for distributed space coverage by a swarm of robots. The goal is to build a dense, convex network that is robust against disconnection while robots are flocking with only incomplete knowledge about the network. The controller is an integrated framework of two different algorithms. First, we present a boundary force algorithm: physics-based swarm intelligence that borrows the concept of surface tension force between liquid molecules. The combination of such a force with conventional flocking produces a convex and dense configuration without knowledge of the complete geometry of a robot network. Second, robots distributively determine when a configuration is on the verge of disconnection by identifying a local articulation point—a region where the removal of a single robot will change the local topology. When such a point is detected, robots switch their behavior to clustering, which aggregates them around the vulnerable region to remove every articulation point and retain a connected configuration. Finally, we introduced an index that objectively represents the level of risk of a robot configuration against the massive fragmentation, called vulnerability index. We provide theoretical performance analyses of each algorithm and validate the results with simulations and experiments using a set of low-cost robots.  相似文献   

10.
针对嵌入式仿人足球机器人提出一种霍夫空间中的多机器人协作目标定位算法。机器人利用实验场地中的标志物采用基于三角几何定位方法进行自定位,把机器人多连杆模型进行简化,通过坐标系位姿变换把图像坐标系转换到世界坐标系中,实现机器人目标定位;在多机器人之间建立ZigBee无线传感器网络进行通信,把多个机器人定位的坐标点进行霍夫变换,在霍夫空间中进行最小二乘法线性拟合,获取最优参数,然后融合改进后的粒子滤波实现对目标小球的跟踪;最后在21自由度的仿人足球机器人上进行仿真和实验。数据结果表明,这种多机器人协作的定位算法的精度提高了约48%,在满足实时性的前提下,对目标的跟踪效果也得到了改善。  相似文献   

11.
This paper investigates the active fault tolerant cooperative control problem for a team of wheeled mobile robots whose actuators are subjected to partial or severe faults during the team mission. The cooperative robots network only requires the interaction between local neighbors over the undirected graph and does not assume the existence of leaders in the network. We assume that the communication exists all the time during the mission. To avoid the system''s deterioration in the event of a fault, a set of extended Kalman filters (EKFs) are employed to monitor the actuators'' behavior for each robot. Then, based on the online information given by the EKFs, a reconfigurable sliding mode control is proposed to take an appropriate action to accommodate that fault. In this research study, two types of faults are considered. The first type is a partial actuator fault in which the faulty actuator responds to a partial of its control input, but still has the capability to continue the mission when the control law is reconfigured. In addition, the controllers of the remaining healthy robots are reconfigured simultaneously to move within the same capability of the faulty one. The second type is a severe actuator fault in which the faulty actuator is subjected to a large loss of its control input, and that lead the exclusion of that faulty robot from the team formation. Consequently, the remaining healthy robots update their reference trajectories and form a new formation shape to achieve the rest of the team mission.  相似文献   

12.
《Advanced Robotics》2013,27(7):669-694
Robot cooperation means 'work-accomplishment action with collaboration of multiple robots by applying shared information, transmitted from a robot to others in a system'. The definition implies that efficiency of a cooperative robot system depends directly upon two main factors, one is communication among the robots and the other is movement of the robots. Robots with appropriate cooperation are expected to work efficiently. The authors propose here an efficient communication method for a cooperative robots system, Code Division Carrier Sensing Multiple Accesses with Collision Detection (CDCSMA-CD). CDCSMA-CD, differing from communication methods in the past, is specifically designed for a cooperative robot system so it can be applied appropriately for both point-to-point and broadcast communication. Within this paper, the principle and hardware structure of the proposed CDCSMA-CD are described. The efficiency of CDCSMA-CD, compared with other communication methods, is then evaluated and discussed.  相似文献   

13.
This paper presents a decentralized motion planner for a team of nonholonomic mobile robots subject to constraints imposed by sensors and the communication network. The motion planning scheme consists of decentralized receding horizon planners that reside on each vehicle to achieve coordination among flocking agents. The advantage of the proposed algorithm is that each vehicle only requires local knowledge of its neighboring vehicles. The main requirement for designing an optimal conflict-free trajectory in a decentralized way is that each robot does not deviate too far from its presumed trajectory designed without taking the coupling constraints into account. A comparative study between the proposed algorithm and other existing algorithms is provided in order to show the advantages, especially in terms of computing time. Finally, experiments are performed on a team of three mobile robots to demonstrate the validity of the proposed approach.  相似文献   

14.
Research on humanoid robots has produced various uses for their body properties in communication. In particular, mutual relationships of body movements between a robot and a human are considered to be important for smooth and natural communication, as they are in human–human communication. We have developed a semi-autonomous humanoid robot system that is capable of cooperative body movements with humans using environment-based sensors and switching communicative units. Concretely, this system realizes natural communication by using typical behaviors such as: “nodding,” “eye-contact,” “face-to-face,” etc. It is important to note that the robot parts are NOT operated directly; only the communicative units in the robot system are switched. We conducted an experiment using the mentioned robot system and verified the importance of cooperative behaviors in a route-guidance situation where a human gives directions to the robot. The task requires a human participant (called the “speaker”) to teach a route to a “hearer” that is (1) a human, (2) a developed robot that performs cooperative movements, and (3) a robot that does not move at all. This experiment is subjectively evaluated through a questionnaire and an analysis of body movements using three-dimensional data from a motion capture system. The results indicate that the cooperative body movements greatly enhance the emotional impressions of human speakers in a route-guidance situation. We believe these results will allow us to develop interactive humanoid robots that sociably communicate with humans.  相似文献   

15.
This paper proposes a decentralized behavior-based formation control algorithm for multiple robots considering obstacle avoidance. Using only the information of the relative position of a robot between neighboring robots and obstacles, the proposed algorithm achieves formation control based on a behavior-based algorithm. In addition, the robust formation is achieved by maintaining the distance and angle of each robot toward the leader robot without using information of the leader robot. To avoid the collisions with obstacles, the heading angles of all robots are determined by introducing the concept of an escape angle, which is related with three boundary layers between an obstacle and the robot. The layer on which the robot is located determines the start time of avoidance and escape angle; this, in turn, generates the escape path along which a robot can move toward the safe layer. In this way, the proposed method can significantly simplify the step of the information process. Finally, simulation results are provided to demonstrate the efficiency of the proposed algorithm.  相似文献   

16.
COBOS: Cooperative backoff adaptive scheme for multirobot task allocation   总被引:1,自引:0,他引:1  
In this paper, the cooperative backoff adaptive scheme (COBOS) is proposed for task allocation amongst a team of heterogeneous robots. The COBOS operates in regions with limited communication ranges, and is robust against robot malfunctions and uncertain task specifications, with each task potentially requiring multiple robots. The portability of tasks across teams (or when team demography changes) is improved by specifying tasks using basis tasks in a matrix framework. The adaptive feature of COBOS further increases the flexibility of robot teams, allowing robots to adjust their actions based on past experience. In addition, we study the properties of COBOS: operation domain; communication requirements; computational complexity; and solution quality; and compare the scheme with other task-allocation mechanisms. Realistic simulations are carried out to verify the effectiveness of the proposed scheme.  相似文献   

17.
This paper proposes a decentralized multi-robot graph exploration approach in which each robot takes independent decision for efficient exploration avoiding inter-robot collision without direct communication between them. The information exchange between the robots is possible through the beacons available at visited vertices of the graph. The proposed decentralized technique guarantees completion of exploration of an unknown environment in finite number of edge traversals where graph structure of the environment is incrementally constructed. New condition for declaring completion of exploration is obtained. The paper also proposes a modification in incidence matrix so that it can be used as a data structure for information exchange. The modified incidence matrix after completion represents map of the environment. The proposed technique requires either lesser or equal number of edge traversals compared to the existing strategy for a tree exploration. A predefined constant speed change approach is proposed to address the inter-robot collision avoidance using local sensor on a robot. Simulation results verify the performance of the algorithm on various trees and graphs. Experiments with multiple robots show multi-robot exploration avoiding inter-robot collision.  相似文献   

18.
This paper addresses a new approach for modeling and control of multiple teams of mobile robots navigating in a terrain with obstacles, while maintaining a desired formation and changing formations when required. We model each team as a triple, (g,r, ?? ), consisting of a group element, gSE(2), that describes the gross position of the lead robot, a set of shape variables, r, that describe the relative positions of robots, and a control graph, ??, that describes the behaviors of the robots in the formation. We assume that all the robots are equipped with the appropriate sensors to detect and avoid other robots and obstacles in the environment. Our framework enables the representation and enumeration of possible control graphs, and the coordination of transitions between any two control graphs. Further, we describe an algorithm that allows each team of robots to move between any two formations, while avoiding obstacles. As the number of robots increases, the number of possible control graphs increases. However, because the control computations are decentralized, the algorithms scale with the number of robots. We present examples to illustrate the control graphs and the algorithm for transitioning between them in the presence and absence of sensor noise. © 2002 Wiley Periodicals, Inc.  相似文献   

19.
In the near future, we will have to live with many machines such as home robots, hospital robots, and so on. User-friendly communication between humans and those machines is very important for a cooperative system utilizing their features and abilities. As an example of a human-robot cooperative system, we propose an intuitive approach to robot teaching with multimedia tools.  相似文献   

20.
This paper presents a decentralized algorithm for area partition in surveillance missions that ensures information propagation among all the robots in the team. The robots have short communication ranges compared to the size of the area to be covered, so a distributed one-to-one coordination schema has been adopted. The goal of the team is to minimize the elapsed time between two consecutive observations of any point in the area. A grid-shape area partition strategy has been designed to guarantee that the information gathered by any robot is shared among all the members of the team. The whole proposed decentralized strategy has been simulated in an urban scenario to confirm that fulfils all the goals and requirements and has been also compared to other strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号