首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Watson–Crick base‐pairing with specificity and predictability makes DNA molecules suitable for building versatile nanoscale structures and devices, and the DNA origami method enables researchers to incorporate more complexities into DNA‐based devices. Thermally controlled atomic force microscopy in combination with nanomechanical spectroscopy with forces controlled in the pico Newton (pN) range as a novel technique is introduced to directly investigate the kinetics of multistrand DNA hybridization events on DNA origami nanopores under defined isothermal conditions. For the synthesis of DNA nanostructures under isothermal conditions at 60 °C, a higher hybridization rate, fewer defects, and a higher stability are achieved compared to room‐temperature studies. By quantifying the assembly times for filling pores in origami structures at several constant temperatures, the fill factors show a consistent exponential increase over time. Furthermore, the local hybridization rate can be accelerated by adding a higher concentration of the staples. The new insight gained on the kinetics of staple‐scaffold hybridization on the synthesis of two dimensional DNA origami structures may open up new routes and ideas for designing DNA assembly systems with increased potential for their application.  相似文献   

2.
DNA origami provides rapid access to easily functionalized, nanometer‐sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA‐based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA‐directed, site‐selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22‐fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface.  相似文献   

3.
DNA origami has rapidly emerged as a powerful technique to fabricate user‐defined DNA nanostructures. However, the ability to custom‐make patterns on DNA origami template is hampered by the heavy workload and high cost of changing staple DNA (up to several hundred strands per set). Here, a scaffold‐decorated DNA origami method is developed by prescribing the pattern information to the scaffold DNA. For each pixel of an origami, a designed “pixel strand” (P‐strand) is hybridized to the scaffold, strongly preoccupying a specific position and competing with invading staples in a mild origami assembly. To fabricate a new origami pattern, the P‐strand set needs to be replaced with a universal staple set. The yield of thus‐fabricated DNA origami patterns is comparable to a conventional DNA origami with canonical method. One‐pot fabrication of three different nanopatterns in a single test‐tube is further demonstrated. Also, dynamic switch of the pattern is shown. This method provides a generic approach and offers large flexibility for scaling up the nanofabrication with DNA origami by kinetically modulating the reaction pathway of the staples with the scaffold DNA, which represents a novel route in the self‐assembly of complex biomolecular systems.  相似文献   

4.
The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co‐immobilize proteins with DNA origami at pre‐determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co‐binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm‐wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read‐out. The co‐immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami‐protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single‐molecule protein arrays.  相似文献   

5.
DNA origami methods enable the fabrication of various nanostructures and nanodevices, but their effective use depends on an understanding of their structural and mechanical properties and the effects of basic structural features. Frequency‐modulation atomic force microscopy is introduced to directly characterize, in aqueous solution, the crossover regions of sets of 2D DNA origami based on different crossover/nick designs. Rhombic‐shaped nanostructures formed under the influence of flexible crossovers placed between DNA helices are observed in DNA origami incorporating crossovers every 3, 4, or 6 DNA turns. The bending rigidity of crossovers is determined to be only one‐third of that of the DNA helix, based on interhelical electrostatic forces reported elsewhere, and the measured pitches of the 3‐turn crossover design rhombic‐shaped nanostructures undergoing negligible bending. To evaluate the robustness of their structural integrity, they are intentionally and simultaneously stressed using force‐controlled atomic force microscopy. DNA crossovers are verified to have a stabilizing effect on the structural robustness, while the nicks have an opposite effect. The structural and mechanical properties of DNA origami and the effects of crossovers and nicks revealed in this paper can provide information essential for the design of versatile DNA origami structures that exhibit specified and desirable properties.  相似文献   

6.
Mechanically interlocked molecules have marked a breakthrough in the field of topological chemistry and boosted the vigorous development of molecular machinery. As an archetypal example of the interlocked molecules, catenanes comprise macrocycles that are threaded through one another like links in a chain. Inspired by the transition metal–templated approach of catenanes synthesis, the hierarchical assembly of DNA origami catenanes templated by gold nanoparticles is demonstrated in this work. DNA origami catenanes, which contain two, three or four interlocked rings are successfully created. In particular, the origami rings within the individual catenanes can be set free with respect to one another by releasing the interconnecting gold nanoparticles. This work will set the basis for rich progress toward DNA‐based molecular architectures with unique structural programmability and well‐defined topology.  相似文献   

7.
A combination of three innovative materials within one hybrid structure to explore the synergistic interaction of their individual properties is presented. The unique electronic, mechanical, and thermal properties of graphene are combined with the plasmonic properties of gold nanoparticle (AuNP) dimers, which are assembled using DNA origami nanostructures. This novel hybrid structure is characterized by means of correlated atomic force microscopy and surface‐enhanced Raman scattering (SERS). It is demonstrated that strong interactions between graphene and AuNPs result in superior SERS performance of the hybrid structure compared to their individual components. This is particularly evident in efficient fluorescence quenching, reduced background, and a decrease of the photobleaching rate up to one order of magnitude. The versatility of DNA origami structures to serve as interface for complex and precise arrangements of nanoparticles and other functional entities provides the basis to further exploit the potential of the here presented DNA origami–AuNP dimer–graphene hybrid structures.  相似文献   

8.
Nanomechanical devices are becoming increasingly popular due to the very diverse field of potential applications, including nanocomputing, robotics, and drug delivery. DNA is one of the most promising building materials to realize complex 3D structures at the nanoscale level. Several mechanical DNA origami structures have already been designed capable of simple operations such as a DNA box with a controllable lid, bipedal walkers, and cargo sorting robots. However, the nanomechanical properties of mechanically interlinked DNA nanostructures that are in general highly deformable have yet to be extensively experimentally evaluated. In this work, a multicomponent DNA origami‐based rotor is created and fully characterized by electron microscopy under negative stain and cryo preparations. The nanodevice is further immobilized on a microfluidic chamber and its Brownian and flow‐driven rotational behaviors are analyzed in real time by single‐molecule fluorescence microscopy. The rotation in previous DNA rotors based either on strand displacement, electric field or Brownian motion. This study is the first to attempt to manipulate the dynamics of an artificial nanodevice with fluidic flow as a natural force.  相似文献   

9.
Zhao Z  Liu Y  Yan H 《Nano letters》2011,11(7):2997-3002
Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create higher order structures at the nanometer scale. An important milestone in structural DNA nanotechnology was the development of scaffolded DNA origami in which a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides (staple strands). The achievable dimensions of the DNA origami tile units are currently limited by the length of the scaffold strand. Here we demonstrate a strategy referred to as "superorigami" or "origami of origami" to scale up DNA origami technology. First, this method uses a collection of bridge strands to prefold a single-stranded DNA scaffold into a loose framework. Subsequently, preformed individual DNA origami tiles are directed onto the loose framework so that each origami tile serves as a large staple. Using this strategy, we demonstrate the ability to organize DNA origami nanostructures into larger spatially addressable architectures.  相似文献   

10.
Plasmonic motifs with precise surface recognition sites are crucial for assembling defined nanostructures with novel functionalities and properties. In this work, a unique and effective strategy is successfully developed to pattern DNA recognition sites in a helical arrangement around a gold nanorod (AuNR), and a new set of heterogeneous AuNR@AuNP plasmonic helices is fabricated by attaching complementary‐DNA‐modified gold nanoparticles (AuNPs) to the predesigned sites on the AuNR surface. AuNR is first assembled to one side of a bifacial rectangular DNA origami, where eight groups of capture strands are selectively patterned on the other side. The subsequently added link strands make the rectangular DNA origami roll up around the AuNR into a tubular shape, therefore giving birth to a chiral patterning of DNA recognition sites on the surface of AuNR. Following the hybridization with the AuNPs capped with the complementary strands to the capture strands on the DNA origami, left‐handed and right‐handed AuNR@AuNP helical superstructures are precisely formed by tuning the pattern of the recognition sites on the AuNR surface. Our strategy of nanoparticle surface patterning innovatively realizes hierarchical self‐assembly of plasmonic superstructures with tunable chiroptical responses, and will certainly broaden the horizon of bottom‐up construction of other functional nanoarchitectures with growing complexity.  相似文献   

11.
12.
The hepatitis B virus (HBV) genotyping may profoundly affect the accurate diagnosis and antiviral treatment of viral hepatitis. Existing genotyping methods such as serological, immunological, or molecular testing are still suffered from substandard specificity and low sensitivity in laboratory or clinical application. In a previous study, a set of high‐efficiency hybridizable DNA origami‐based shape ID probes to target the templates through which genetic variation could be determined in an ultrahigh resolution of atomic force microscopy (AFM) nanomechanical imaging are established. Here, as a further confirmatory research to explore the sensitivity and applicability of this assay, differentially predesigned DNA origami shape ID probes are also developed for precisely HBV genotyping. Through the specific identification of visualized DNA origami nanostructure with clinical HBV DNA samples, the genetic variation information of genotypes can be directly identified under AFM. As a proof‐of‐concept, five genotype B and six genotype C are detected in 11 HBV‐infected patients' blood DNA samples of Han Chinese population in the single‐blinded test. The AFM image‐based DNA origami shape ID genotyping approach shows high specificity and sensitivity, which could be promising for virus infection diagnosis and precision medicine in the future.  相似文献   

13.
While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark‐field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron‐beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates.  相似文献   

14.
Organizing DNA origami building blocks into higher order structures is essential for fabrication of large structurally and functionally diverse devices and molecular machines. Unfortunately, the yields of origami building block attachment reactions are typically not sufficient to allow programed assembly of DNA devices made from more than a few origami building blocks. To investigate possible reasons for these low yields, a detailed single‐molecule fluorescence study of the dynamics of rectangular origami dimerization and origami dimer dissociation reactions is conducted. Reactions kinetics and yields are investigated at different origami and ion concentrations, for different ion types, for different lengths of bridging strands, and for the “sticky end” and “weaving welding” attachment techniques. Dimerization yields are never higher than 86%, which is typical for such systems. Analysis of the dynamic data shows that the low yield cannot be explained by thermodynamic instability or structural imperfections of the origami constructs. Atomic force microscopy and gel electrophoresis evidence reveal self‐dimerization of the origami monomers, likely via blunt‐end interactions made possible by the presence of bridging strands. It is suggested that this mechanism is the major factor that inhibits correct dimerization and means to overcome it are discussed.  相似文献   

15.
Efficient fabrication of structurally and functionally diverse nanomolecular devices and machines by organizing separately prepared DNA origami building blocks into a larger structure is limited by origami attachment yields. A general method that enables attachment of origami building blocks using ‘sticky ends' at very high yields is demonstrated. Two different rectangular origami monomers are purified using agarose gel electrophoresis conducted in solute containing 100 × 10?3 m NaCl, a treatment that facilitates the dissociation of most of the incorrectly hybridized origami structures that form through blunt‐end interactions during the thermal annealing process and removes these structures as well as excess strands that otherwise interfere with the desired heterodimerization reaction. Heterodimerization yields of gel‐purified monomers are between 98.6% and 99.6%, considerably higher than that of monomers purified using the polyethylene glycol (PEG) method (88.7–96.7%). Depending on the number of PEG purification rounds, these results correspond to about 4‐ to 25‐fold reduction in the number of incorrect structures observed by atomic force microscopy. Furthermore, the analyses of the incorrect structures observed before and after the heterodimerization reactions and comparison of the purification methods provide valuable information on the reaction mechanisms that interfere with heterodimerization.  相似文献   

16.
In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single‐molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with “fuel” and “antifuel” DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances.  相似文献   

17.
Introduction of the solid phase method to synthesize biopolymers has revolutionized the field of biological research by enabling efficient production of peptides and oligonucleotides. One of the advantages of this method is the ease of removal of excess production materials from the desired product, as it is immobilized on solid substrate. The DNA origami method utilizes the nature of nucleotide base-pairing to construct well-defined objects at the nanoscale, and has become a potent tool for manipulating matter in the fields of chemistry, physics, and biology. Here, the development of an approach to synthesize DNA nanostructures directly on magnetic beads, where the reaction is performed in heavy liquid to maintain the beads in suspension is reported. It is demonstrated that the method can achieve high folding yields of up to 90% for various DNA shapes, comparable to standard folding. At the same time, this establishes an easy, fast, and efficient way to further functionalize the DNA origami in one-pot, as well as providing a built-in purification method for easy removal of excess by-products such as non-integrated DNA strands and residual functionalization molecules.  相似文献   

18.
The stability of DNA origami nanostructures under various environmental conditions constitutes an important issue in numerous applications, including drug delivery, molecular sensing, and single‐molecule biophysics. Here, the effect of Na+ and Mg2+ concentrations on DNA origami stability is investigated in the presence of urea and guanidinium chloride (GdmCl), two strong denaturants commonly employed in protein folding studies. While increasing concentrations of both cations stabilize the DNA origami nanostructures against urea denaturation, they are found to promote DNA origami denaturation by GdmCl. These inverse behaviors are rationalized by a salting‐out of Gdm+ to the hydrophobic DNA base stack. The effect of cation‐induced DNA origami denaturation by GdmCl deserves consideration in the design of single‐molecule studies and may potentially be exploited in future applications such as selective denaturation for purification purposes.  相似文献   

19.
Dynamic DNA nanodevices are designed to perform structure‐encoded motion actuated by a variety of different physicochemical stimuli. In this context, hybrid devices utilizing other components than DNA have the potential to considerably expand the library of functionalities. Here, the reversible reconfiguration of a DNA origami structure using the stimulus sensitivity of elastin‐like polypeptides is reported. To this end, a rectangular sheet made using the DNA origami technique is functionalized with these peptides and by applying changes in salt concentration the hydrophilic–hydrophobic phase transition of these peptides actuate the folding of the structure. The on‐demand and reversible switching of the rectangle is driven by externally imposed temperature oscillations and appears at specific transition temperatures. Using transmission electron microscopy, it is shown that the structure exhibits distinct conformational states with different occupation probabilities, which are dependent on structure‐intrinsic parameters such as the local number and the arrangement of the peptides on the rectangle. It is also shown through ensemble fluorescence resonance energy transfer spectroscopy that the transition temperature and thus the thermodynamics of the rectangle‐peptide system depends on the stimuli salt concentration and temperature, as well as on the intrinsic parameters.  相似文献   

20.
Logic gates are devices that can perform logical operations by transforming a set of inputs into a predictable single detectable output. The hybridization properties, structure, and function of nucleic acids can be used to make DNA‐based logic gates. These devices are important modules in molecular computing and biosensing. The ideal logic gate system should provide a wide selection of logical operations, and be integrable in multiple copies into more complex structures. Here we show the successful construction of a small DNA‐based logic gate complex that produces fluorescent outputs corresponding to the operation of the six Boolean logic gates AND, NAND, OR, NOR, XOR, and XNOR. The logic gate complex is shown to work also when implemented in a three‐dimensional DNA origami box structure, where it controlled the position of the lid in a closed or open position. Implementation of multiple microRNA sensitive DNA locks on one DNA origami box structure enabled fuzzy logical operation that allows biosensing of complex molecular signals. Integrating logic gates with DNA origami systems opens a vast avenue to applications in the fields of nanomedicine for diagnostics and therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号