首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A control chart is a graphical tool used for monitoring a production process and quality improvement. One such charting procedure is the Shewhart‐type control chart, which is sensitive mainly to the large shifts. For small shifts, the cumulative sum (CUSUM) control charts and exponentially weighted moving average (EWMA) control charts were proposed. To further enhance the ability of the EWMA control chart to quickly detect wide range process changes, we have developed an EWMA control chart using the median ranked set sampling (RSS), median double RSS and the double median RSS. The findings show that the proposed median‐ranked sampling procedures substantially increase the sensitivities of EWMA control charts. The newly developed control charts dominate most of their existing counterparts, in terms of the run‐length properties, the Average Extra Quadratic Loss and the Performance Comparison Index. These include the classical EWMA, fast initial response EWMA, double and triple EWMA, runs‐rules EWMA, the max EWMA with mean‐squared deviation, the mixed EWMA‐CUSUM, the hybrid EWMA and the combined Shewhart–EWMA based on ranks. An application of the proposed schemes on real data sets is also given to illustrate the implementation and procedural details of the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The cumulative sum (CUSUM) chart is a very effective control charting procedure used for the quick detection of small‐sized and moderate‐sized changes. It can detect small process shifts missed by the Shewhart‐type control chart, which is sensitive mainly to large shifts. To further enhance the sensitivity of the CUSUM control chart at detecting very small process disturbances, this article presents CUSUM control charts based on well‐structured sampling procedures, double ranked set sampling, median‐double ranked set sampling, and double‐median ranked set sampling. These sampling techniques significantly improve the overall performance of the CUSUM chart over the entire process mean shift range, without increasing the false alarm rate. The newly developed control schemes do not only dominate most of the existing charts but are also easy to design and implement as illustrated through an application example of real datasets. The control schemes used for comparison in this study include the conventional CUSUM chart, a fast initial response CUSUM chart, a 2‐CUSUM chart, a 3‐CUSUM chart, a runs rules‐based CUSUM chart, the enhanced adaptive CUSUM chart, the CUSUM chart based on ranked set sampling (RSS), and the single CUSUM and combined Shewhart–CUSUM charts based on median RSS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts are potentially powerful statistical process monitoring tools because of their excellent speed in detecting small to moderate persistent process shifts. Recently, synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control charts have been proposed based on simple random sampling (SRS) by integrating the EWMA and CUSUM control charts with the conforming run length control chart, respectively. These synthetic control charts provide overall superior detection over a range of mean shift sizes. In this article, we propose new SynEWMA and SynCUSUM control charts based on ranked set sampling (RSS) and median RSS (MRSS) schemes, named SynEWMA‐RSS and SynEWMA‐MRSS charts, respectively, for monitoring the process mean. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed control charts. The run length performances of these control charts are compared with their existing powerful counterparts based on SRS, RSS and MRSS schemes. It turns out that the proposed charts perform uniformly better than the Shewhart, optimal synthetic, optimal EWMA, optimal CUSUM, near‐optimal SynEWMA, near‐optimal SynCUSUM control charts based on SRS, and combined Shewhart‐EWMA control charts based on RSS and MRSS schemes. A similar trend is observed when constructing the proposed control charts based on imperfect RSS schemes. An application to a real data is also provided to demonstrate the implementations of the proposed SynEWMA and SynCUSUM control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The combined application of a Shewhart chart and cumulative sum (CUSUM) control chart is an effective tool for the detection of all sizes of process shifts as the scheme combines the advantages of a CUSUM at detecting small to moderate shifts and Shewhart for the quick detection of very large shifts. This article proposes new combined Shewhart–CUSUM S charts based on the extreme variations of ranked set sampling technique, for efficient monitoring of changes in the process dispersion. Using Monte Carlo simulations, the combined scheme is designed to minimize the average extra quadratic loss over the entire process shift domain. The results show that the combined Shewhart–CUSUM S charts uniformly outperform several other procedures for detecting increases and decreases in the process variability. Moreover, the proposed scheme can detect changes that are small enough to escape the Shewhart S chart or fairly large to escape detection by the CUSUM S chart. Numerical example is given to illustrate the practical application of the proposed scheme using real industrial data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This study analyzes the performance of combined applications of the Shewhart and cumulative sum (CUSUM) range R chart and proposes modifications based on well‐structured sampling techniques, the extreme variations of ranked set sampling, for efficient monitoring of changes in the process dispersion. In this combined scheme, the Shewhart feature enables quick detection of large shifts from the target standard deviation while the CUSUM feature takes care of small to moderate shifts from the target value. We evaluate the numerical performance of the proposed scheme in terms of the average run length, standard deviation of run length, the average ratio average run length, and average extra quadratic loss. The results show that the combined scheme can detect changes in the process that were small or large enough to escape detection by the lone Shewhart R chart or CUSUM R chart, respectively. We present a comparison of the proposed schemes with several dispersion charts for monitoring changes in process variability. The practical application of the proposed scheme is demonstrated using real industrial data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The combination of Shewhart control charts and an exponentially weighted moving average (EWMA) control charts to simultaneously monitor shifts in the mean output of a production process has proven very effective in handling both small and large shifts. To improve the sensitivity of the control chart to detect off‐target processes, we propose a combined Shewhart‐EWMA (CSEWMA) control chart for monitoring mean output using a more structured sampling technique, i.e. ranked set sampling (RSS) instead of the traditional simple random sampling. We evaluated the performance of the proposed charts in terms of different run length (RL) properties including average RL, standard deviation of the RL, and percentile of the RL. Comparisons of these charts with some existing control charts designed for monitoring small, large, or both shifts revealed that the RSS‐based CSEWMA charts are more sensitive and offer better protection against all types of shifts than other schemes considered in this study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Exponentially weighted moving average (EWMA) control charts are mostly used to monitor the manufacturing processes. In this paper, we propose some improved EWMA control charts for detecting the random shifts in the process mean and process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS), named EWMA‐ORSS and EWMA‐OIRSS charts, respectively. Monte Carlo simulations are used to estimate the average run length, median run length and standard deviation of run length of the proposed EWMA control charts. It is observed that the EWMA‐ORSS mean control chart is able to detect the random shifts in the process mean substantially quicker than the Shewhart‐cumulative sum and the Shewhart‐EWMA control charts based on the RSS scheme. Both EWMA‐ORSS and EWMA‐OIRSS location charts perform better than the classical EWMA, hybrid EWMA, Shewhart‐EWMA and fast initial response‐EWMA charts. The EWMA‐ORSS dispersion control chart performs better than the simple random sampling based CS‐EWMA and other EWMA control charts in efficient detection of the random shifts that occur in the process variability. An application to real data is also given to explain the implementation of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart-CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location parameter based on ordered double-ranked set sampling (RSS) scheme, where the CUSUM chart refers to the Crosier's CUSUM chart. The run-length characteristics of the proposed CUSUM charts are computed with the Monte Carlo simulations. The run-length profiles of the proposed CUSUM charts are compared with those of the CUSUM charts based on simple random sampling, RSS, and ordered RSS schemes. It is found that the proposed CUSUM charts uniformly outperform their existing counterparts when detecting all different kinds of shifts in the process mean. A real data set is also considered to explain the implementation of the proposed CUSUM charts.  相似文献   

14.
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Recent research has shown that adaptive control charts and the CUmulative SUM (CUSUM) schemes are quicker in detecting process shifts than traditional static Shewhart charts. This article proposes a weighted loss function CUSUM (WLC) scheme with Variable Sampling Intervals (VSI). It simultaneously monitors both mean shifts and an increasing variance shift by manipulating a single CUSUM chart. Most importantly, this VSI WLC scheme is much easier to operate and design than a VSI CCC scheme which comprises of three CUSUM charts (two of them monitoring the increasing and decreasing mean shifts and one monitoring the increasing variance shift). In terms of detection efficiency, the VSI WLC scheme is a much more powerful tool than the static X&S chart, the VSI X&S chart and the static WLC scheme. It is even more powerful than the VSI CCC scheme for many different combinations of mean and increasing variance shifts.  相似文献   

16.
Nonparametric control charts can be useful as an alternative in practice to the data expert when there is a lack of knowledge about the underlying distribution. In this study, a nonparametric cumulative sum (CUSUM) sign control chart for monitoring and detecting possible deviation from the process mean using ranked set sampling is proposed. Ranked set sampling is an effective method when the observations are inexpensive, and measurements are perhaps destructive. The average run length is used as performance measure for the proposed nonparametric CUSUM sign chart. Simulation study shows that the proposed version of the CUSUM sign chart using ranked set sampling generally outperforms than that version of the nonparametric CUSUM sign chart and the parametric CUSUM control chart using simple random sampling scheme. An illustrative example is also provided for practical consideration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper compares the economic performance of CUSUM and Shewhart schemes for monitoring the process mean. We develop new simple models for the economic design of Shewhart schemes and more accurate ways to evaluate the economic performance of CUSUM schemes. The results of the comparative analysis show that the economic advantage of using a CUSUM scheme rather than the simpler Shewhart chart is substantial only when a single measurement is available at each sampling instance, i.e., only when the sample size is always n = 1, or when the sample size is constrained to low values.  相似文献   

18.
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

20.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号