首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AZ31镁合金高应变速率多向锻造组织演变及力学性能   总被引:1,自引:0,他引:1  
采用空气锤对AZ31合金在350℃以Δε=0.22的道次应变量进行1~12道次多向锻造变形,并对其组织和性能进行测试。结果表明:合金高应变速率多向锻造(HSRTF)组织演变分为两个阶段,累积应变∑Δε<1.32时为晶粒细化阶段,其主要机制为孪晶再结晶;累积应变∑Δε>1.32时为晶粒长大阶段,其主要机制为热激活长大。利用大量的孪晶对再结晶的促进作用,高应变速率多向锻造工艺可快速生产细晶粒高性能AZ31变形镁合金锭坯,累积应变∑Δε=1.32时,可获得组织均匀、平均晶粒度为7.4μm的锻坯,其抗拉强度、屈服强度和伸长率分别为313 MPa、209 MPa和28.6%。  相似文献   

2.
对AZ31镁合金热挤压板进行室温轧制(形变量为8%)后,利用背散射衍射技术原位(in-situ EBSD)观测了轧制试样中不同类型的孪晶组织在再结晶退火过程中的取向演变。结果表明:退火过程中拉伸孪晶区域形成尺寸相对粗大的再结晶新晶粒,再结晶晶粒取向与拉伸孪晶的取向较为接近;压缩孪晶/双孪晶区域形成了细小的再结晶晶粒,再结晶晶粒偏离基面取向。孪晶再结晶显著影响镁合金在退火过程中的织构演变,轧制样品中,拉伸孪晶再结晶使得基面织构强度增强,压缩孪晶再结晶则可以在一定程度上弱化镁合金的基面织构。  相似文献   

3.
采用累积叠轧焊(ARB)工艺制备超细晶组织AZ31镁合金薄板.实验结果表明,进行3道次ARB变形后,AZ31板材晶粒显著细化,平均晶粒尺寸约1.3μm,呈等轴状,材料组织均匀,没有发现孪晶.采用EBSD技术观察组织演变和晶粒的取向差.ARB变形过程中的晶粒细化可归因于累积应变诱导的晶粒细化、累积应变强化回复和再结晶以及ARB变形过程中复杂的界面和剪切应变分布.  相似文献   

4.
AZ31镁合金中拉伸孪晶静态再结晶的分析   总被引:2,自引:0,他引:2  
基于前期工作对压缩孪晶静态再结晶的分析,主要利用XRD和EBSD技术进一步研究AZ31镁合金中拉伸孪晶静态再结晶过程中组织和织构的演变规律,以及再结晶初期新晶粒的取向特征,结果表明:拉伸孪晶不能有效地促进再结晶形核,其细化晶粒的效果不显著,其再结晶速率显著延迟于压缩孪晶;退火过程中并没有生成新的再结晶织构组分,表现为初始基面织构的减弱;新晶粒优先在拉伸孪晶的变体交叉处,或拉伸孪晶与压缩孪晶的交叉处形核,但其取向规律性不强,没有遵循初始拉伸或压缩孪晶内的取向规律,同时还对拉伸与压缩孪晶的再结晶行为进行了比较。  相似文献   

5.
采用光学显微镜(OM)、硬度测试等手段研究了轧制温度和压下率对AZ31镁合金铸轧板材显微组织和硬度的影响。结果表明:轧制温度350℃和总压下率72%轧制的AZ31镁合金试样组织中有大量孪晶出现,细小的再结晶晶粒分布在孪晶内部和α相晶界处,将大尺寸晶粒分割成较小晶粒,未发生再结晶的晶粒明显发生扭曲变形,组织得到明显细化。在350~410℃,随着轧制温度的升高,AZ31镁合金试样平均晶粒尺寸逐渐增大,试样硬度逐渐降低。轧制温度350、380、410℃,总压下率72%时,试样的硬度分别为86.6、84.7、79.5HV。  相似文献   

6.
采用等通道转角挤压(ECAP)方法对AZ31镁合金进行挤压加工,并研究了变形过程中试样各部位的显微组织和硬度的变化.显微组织分析表明,孪晶在剪切变形阶段可以协调晶粒变形,而且在变形后成为动态再结晶晶粒形成的中心.ECAP过程中AZ31镁合金的组织是以一种非均匀的方式细化的,再结晶晶粒主要在孪晶界上形核,这形成了双模态的晶粒分布.研究还发现,经过ECAP后的试样纵截面上部残留的大晶粒明显多于下部的,这是由于在静态再结晶阶段试样各部位受力状态的不同造成的,这很好地解释了ECAP不同路径对镁合金均匀性的影响.  相似文献   

7.
通过表面机械研磨处理(SMAT),在平行于轧面的AZ31镁合金试样表层中产生了纳米级晶粒。采用光学显微镜(OM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)和纳米压痕仪等设备分析了经过SMAT处理后的AZ31镁合金试样的微观组织和力学性能。OM观察表明,SMAT处理后,AZ31镁合金形成了梯度组织结构; TEM观察表明,晶粒细化可归因于位错的运动和动态再结晶的发生。在距离表面较深的低应变区域,由于变形量小,位错缠结起到细化晶粒的作用。在亚微米晶层,由于应变量的增加,晶粒得到进一步的细化。在最表层,由于发生了再结晶,使晶粒得到更进一步细化,从而产生纳米晶层。EBSD分析表明,随着应变的增加,晶界取向差连续增加,说明旋转再结晶主导了晶粒的细化过程。纳米压痕硬度分析表明,由表及里硬度逐渐降低。  相似文献   

8.
再结晶退火对AZ31镁合金挤压板材组织与性能的影响   总被引:1,自引:1,他引:0  
利用光学显微镜和扫描电镜对AZ31镁合金挤压板再结晶退火前后的显微组织和断口形貌进行分析,并通过室温拉伸试验研究了再结晶退火前后的力学性能.结果表明,随退火保温时间的延长,板材先出现大量片状退火孪晶,随后退火孪晶消失,变形组织被细小、均匀的再结晶晶粒所取代;再结晶退火后,挤压板伸长率增加,抗拉强度提高;退火后试样断裂时宏观断口呈现撕裂棱与韧窝共存的形貌,呈韧性断裂,且随着合金晶粒尺寸减小,撕裂棱和韧窝更加细小.  相似文献   

9.
在变形温度为450°C和应变速率为2 s-1的条件下对均匀化退火后的Mg-7Gd-4Y-1Nd-0.5Zr合金进行热压缩试验。采用金相显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)综合分析合金变形过程中的动态再结晶机制。采用电子背散射衍射(EBSD)获得晶体微取向信息。结果表明:随应变逐渐增加到-1.88,合金流变应力先快速升高到某个峰值,随后下降到最低值,最后又开始逐渐上升。在低应变下,大量{1 012}拉伸孪晶诱发形核形成动态再结晶晶粒,导致晶粒明显细化。动态再结晶晶粒首先在孪晶边界进行形核,且与孪晶母体存在30°0001的取向差。在大应变下,合金组织中在原始大晶粒附近形成细小动态再结晶晶粒,且从原始大晶粒内部到其晶界处的累积微取向连续增加,从而确定合金发生了连续动态再结晶。合金中也发现了粒子激发形核的动态再结晶机制。  相似文献   

10.
以固溶态Mg-8Gd-1Er-0.5Zr(质量分数,%)合金为对象,研究了在高应变速率多向锻造过程中合金微观组织及织构的演变规律,并探讨了高应变速率多向锻造对合金力学性能的影响机制.结果表明,变形初期,合金晶粒内部的大部分{101ˉ2}拉伸孪晶被激发,随着累积应变(ΣΔε)的增加,孪晶面积分数降低,再结晶面积分数增高,再结晶机制以连续动态再结晶为主,同时伴有不连续动态再结晶和孪生诱导再结晶.合金晶粒细化分为2个阶段:当ΣΔε<1.32时,为孪晶破碎机制,晶粒尺寸由初始态的33.0μm细化至13.1μm;当ΣΔε≥1.32时,为动态再结晶细化机制,晶粒尺寸进一步细化至4.2μm.合金织构随ΣΔε增加由基面织构转变为双峰织构,且织构强度增加.ΣΔε=0.66时,多向锻造Mg-8Gd-1Er-0.5Zr合金的抗拉强度、屈服强度和延伸率分别达到295 MPa、252 MPa和13.8%,比固溶态分别提高了80%、157%和13.1%.  相似文献   

11.
对轧制下压方向平行和垂直晶粒c轴的两类板材进行150℃轧制(5%下压量)后,利用背散射电子衍射分析(EBSD)研究了轧制试样中不同类型的孪晶组织对静态再结晶的晶粒形核、微观组织及织构的演变的影响。结果表明:含有大量{1011-}-{1012-}双孪晶的样品中,二次孪生有效促进再结晶形核,显著细化晶粒。再结晶晶粒取向规律性不强,有效削弱基面织构。而含有大量{1012-}拉伸孪晶的样品,拉伸孪晶不能有效促进再结晶形核。退火过程中基体不断长大,当再结晶驱动力足够大时,基体会吞并周围拉伸孪晶,同时诱发织构改变,基体取向的织构逐渐增强,拉伸孪晶取向的织构逐步减弱。  相似文献   

12.
通过显微组织观察和室温拉伸试验研究了多向冷轧和单向冷轧对AZ31镁合金板材显微组织和力学各向异性的影响。结果表明:多向冷轧AZ31镁合金板材产生的孪晶和形变带较单向冷轧多;经过350℃×1 h相同退火后,由于多向轧制合金板的晶粒尺寸更细小均匀,因而综合力学性能比单向冷轧的高,力学各向异性低。  相似文献   

13.
对具有强基面织构的轧制态AZ31镁合金实心圆棒进行了扭转及后续573 K保温1 h退火。使用电子背散射衍射技术(EBSD)探索了不同扭转角对组织及力学性能的影响。结果表明,扭转后试样扭转轴中心的组织(心部)孪晶体积分数要小于边部组织;扭转角度越大,试样中的孪晶体积分数越大。退火后,除了最小应变量的心部组织中残留有部分孪晶外,其余样品都发生了完全静态再结晶。应变量越大,退火后的平均晶粒尺寸越小,样品的塑性越好。与初始样品相比,在保持强度基本不变的情况下对于最大变形量退火的样品其塑性从13.8%提升到了25.9%。晶粒细化和织构弱化是使镁合金力学性能得到提升的主要原因。  相似文献   

14.
以含长周期堆垛有序(LPSO)相的Mg-5.6Gd-0.8Zn(质量分数,%)合金为研究对象,分析了合金多向锻造过程中的变形机制、动态再结晶及显微组织演变。结果表明:变形初期,■拉伸孪生仅在部分晶粒中激发;随锻造方向的改变,不同晶体取向的晶粒能够激发孪生变形,孪生体积分数增加,孪生变体选择符合Schmid定律。孪生受阻碍的晶粒通过滑移及扭折协调变形,扭折带类型主要为转轴分布在■晶向的基面扭折。多向锻造过程中,晶界处优先发生动态再结晶;随着变形量的增加,晶界处再结晶体积分数增大,晶内孪晶与扭折界面诱发再结晶,孪晶逐渐演变为条带状细晶组织。在孪晶、扭折带切割晶粒,晶界再结晶,孪晶、扭折带诱发再结晶多重机制的共同作用下,原始粗晶组织得到了显著细化。  相似文献   

15.
将高温叠轧变形和退火再结晶相结合,尝试共同调控AZ31镁合金板材的组织与织构。在300℃下对高温叠轧AZ31镁合金板材进行不同时间的退火处理,并研究了退火对高温叠轧板材组织、晶粒取向和力学性能的影响。结果表明:随退火时间的增加,界面结合质量逐渐提高,当退火时间为30 min时,部分区域出现冶金现象;显微硬度随退火时间的增加而降低;延长退火时间,高温叠轧板材非基面取向晶粒比重显著增加,同时,高温叠轧历史累积应变量、后续退火两者共同作用促使AZ31镁合金板材基面织构显著弱化。  相似文献   

16.
《锻压技术》2021,46(8):7-11,25
对均匀化处理后AZ31镁合金进行高应变速率多向锻造,使用金相显微镜(OM)与电子背散射衍射仪(EBSD)等测试手段研究了不同累积应变量对AZ31镁合金显微组织的影响;采用电化学测试等方法研究不同累积应变量对合金在质量分数为3.5%的NaCl溶液中的腐蚀行为。实验结果表明:相对于锻造前,高应变速率多向锻造后,合金平均晶粒尺寸大幅度减小、耐腐蚀性能提升。当累积应变量为1.32时,合金获得了均匀细小的晶粒组织,其平均晶粒度为7.8218μm,再结晶比例分数为79.40683%,平均腐蚀速率V_i=0.072 mm·a~(-1),合金耐腐蚀性能最优;当累积应变量大于1.32时,在自激活的作用下,引起了再结晶晶粒的长大,合金的再结晶程度与组织的均匀性下降,耐腐蚀性能降低。  相似文献   

17.
为研究高应变速率冲击载荷下预压缩轧制态AZ31镁合金的退孪生行为与动态力学性能,将原始试样沿轧制方向(RD)进行真应变为4%的准静态预压缩,引入大量的■拉伸孪晶。利用分离式Hopkinson压杆(SHPB)装置对原始及预压缩AZ31镁合金样品沿板材法向(ND)进行应变速率为700、1000、1300和1600 s-1的高速冲击实验,并利用EBSD技术对原始试样、预压缩试样以及不同应变速率下的冲击试样进行微观组织分析。结果表明,相比于原始试样,预压缩AZ31镁合金试样内的基面织构强度明显减弱并形成c轴与RD平行的孪晶织构,由于拉伸孪晶界对母晶粒的分割作用使得平均晶粒尺寸明显降低。预压缩AZ31镁合金试样沿ND高速冲击时的主要变形机制为退孪生,随着冲击应变速率的增大,孪晶织构逐渐恢复至初始的强基面织构,孪晶面积分数和孪晶平均厚度均逐渐降低,平均晶粒尺寸逐渐增大。此外,沿ND冲击原始试样相比于预压缩试样具有更高的强度和更低的塑性,且在塑性变形过程中预压缩试样呈现出更加明显的应变速率敏感性。  相似文献   

18.
通过电子背散射衍射(EBSD)和维氏硬度测试,研究不同退火温度下新型铝钛强韧的CrCoNi中熵合金组织演变规律和硬度变化。结果表明,退火温度较高(1100℃)时,合金的退火孪晶密度较高,且孪晶形貌更加平直规整;再结晶和晶粒长大和退火温度并非简单的线性关系,超过临界温度合金再结晶和晶粒长大过程明显加快,在1100℃下退火1 h可得到平均晶粒尺寸20.89μm的等轴晶组织,由于加工应力释放,合金硬度下降到302.9 HV0.2。  相似文献   

19.
利用EBSD技术研究了样品取向对AZ31镁合金静态再结晶行为的影响.采用了沿板材法向切取的试样(0°试样)和沿板材横向切取的试样(90°试样)2种取向的样品,在150℃进行15%单轴压缩变形,然后在275℃保温不同时间进行退火实验.结果表明,0°试样15%单轴压缩变形内的变形机制以滑移为主;90°试样15%单轴压缩变形内的变形机制先以拉伸孪生为主,然后以滑移为主;由于变形机制的差异,相同压缩应变下90°试样比0°试样形变储存能要小.与0°试样相比,90°试样相同退火参数下静态再结晶开始及结束时间都被推迟.随着再结晶过程的进行,90°试样和0°试样2°—4°小角晶界含量均降低,均在30°取向差角处产生峰值;绝大多数再结晶晶粒优先在原始晶界处形核,少数再结晶晶粒在拉伸孪晶内部形核.  相似文献   

20.
多向锻造工艺对AZ80镁合金显微组织和力学性能的影响   总被引:18,自引:1,他引:18  
郭强  严红革  陈振华  张辉 《金属学报》2006,42(7):739-744
通过多向锻造工艺制备出了组织均匀、晶粒尺寸为1-2μm的AZ80镁合金锻坯,经7个道次锻压,材料硬度、屈服强度和抗拉强度达到最大,分别为87.3HB,258.78MPa和345.04MPa,是锻前试样硬度的1.43倍、强度的2倍;伸长率在6个道次达到最大,为7.85%,是锻前的2.45倍.多向锻造工艺下,材料内部易形成交错变形带,有利于组织细化,形变诱导晶粒细化是主要的晶粒细化机制,晶粒细化过程存在一临界应变量εc(2≤εc≤2.4),当实际应变量εx超过临界应变量εc时,材料基本为动态再结晶细晶组织,进一步细化变得困难,铸态试样室温拉伸断口为准解理断裂加少量剪切断裂,锻后试样断口出现大量细小韧窝,随应变量的增加,韧窝数目增多,分布趋向均匀,材料延性增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号