首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
某铁矿为微细粒弱磁性铁矿,有用矿物主要是赤铁矿和磁铁矿,脉石矿物主要是石英.在磨矿中产生许多矿泥,影响其可浮性.采用重选、磁选、浮选、选择性絮凝和磁化焙烧等工艺处理该矿石.结果表明,采用选择性絮凝脱除矿泥,阳离子反浮选工艺最合适.在原矿含铁45.27%的情况下,获得铁品位59.67%,回收率78.84%的铁精矿.  相似文献   

2.
丘盛华  聂光华  涂威 《云南冶金》2011,40(1):31-34,39
主要对广西某褐铁矿进行选矿试验研究,针对该矿石铁品位相对较高,含S、P成分少的性质,采用了单一重选、磁选及氧化焙烧-强磁选和还原焙烧-弱磁选工艺进行了试验研究。结果表明,采用单一摇床重选或强磁选,精矿铁品位和回收率都低,选别效果较差;采用氧化焙烧-强磁选工艺,氧化焙烧可以把原矿品位提高到57%,强磁选对提高矿石品位效果较差;采用还原焙烧-弱磁选工艺效果较好,可获得品位为59.77%、回收率为77.24%铁精矿。  相似文献   

3.
弱磁性铁矿的选矿有重选、浮选、絮凝浮选、焙烧磁选、强磁选以及电选等多种方法。我国主要采用焙烧磁选和浮选,其次是重选,近年来开始采用强磁选。强磁选法处理氧化铁矿石成本低,处理能力大,不需药剂无污染,精矿易脱水。故强磁选对氧化铁矿及弱磁性矿物的开发利用是一种行之有效的途径。从60年代以来,国内许多单位曾先后研制成平环、立环、锥盘、倒锥盘、立盘、转盘式、笼式等多种类型强磁选机。而新近研制的强磁机则以平环为最多,笔者最近对昆明冶金研究所研制成功的新型平环机进行了考查,现将性能特点及应用效果作一概述,  相似文献   

4.
云南某菱铁矿焙烧产品选矿工艺研究   总被引:1,自引:1,他引:0  
通过对云南某菱铁矿石焙烧产品的性质及其相关研究认为,细磨-弱磁选是有效处理该焙烧产品的工艺.试验表明:①该菱铁矿焙烧效果较好;②磨矿是影响选矿指标的重要因素;③弱磁选和重选都能有效地回收磨细焙烧产品中的铁矿物;④在相同磨矿条件下,弱磁选比重选回收率高,而富集比相对较低;⑤采用磨矿(磨矿细度为72.51%-0.074mm)-弱磁选(磁场强度为232kA/m),一次粗选,一次精选工艺选别该焙烧产品,可以得到铁品位为74.10%,回收率为93.06%的铁精矿.  相似文献   

5.
一、前言 钛铁矿的选矿方法有重选、磁选、重选-电选、磁选-电选、重选-浮选、重选-磁选-浮选以及单一浮选等。由于国家对钛精矿品位的要求不断提高(由含TiO_240%提高到48%),单一的重选、磁选不能获得最终精矿,需要用其它方法再选,因而,电选应运而生,可以得到46%以上的精矿。但是,电  相似文献   

6.
本文针对某钢铁厂欲外购铬铁矿Cr2O3含量28.81%、TFe含量33.08%、铬铁比仅0.68的原矿样,在焙烧温度为650℃下进行磁化焙烧-弱磁选试验。重选-磁化焙烧-弱磁选可获得精矿Cr203含量51.44%,TFe含量为15.25%,铬铁比为2.63的试验指标。原矿磁化焙烧-弱磁选可获得精矿Cr203含量44.16%,TFe含量为14.33%,铬铁比为2.40的试验指标。  相似文献   

7.
对某选铁尾矿中的白钨进行了综合回收试验研究。根据试料性质,采用了弱磁选-重选-强磁选、弱磁选-重选、弱磁选-重选-浮选等3种方案进行白钨选矿试验,最终确定弱磁选-重选-浮选工艺。试验结果为铁精矿品位Fe65.89%,回收率22.07%,钨精矿品位WO351.64%,回收率为10.94%的分选指标。  相似文献   

8.
某选厂钨细泥回收工艺的研究   总被引:3,自引:0,他引:3  
李平 《江西有色金属》2001,15(1):24-26,30
针对某选厂原细泥生产流程现状,通过小型试验,对其钨细泥处理工艺进行了改进和完善,增设了以磁选-重选流程为主体的磁选-浮选-重选细泥回收工艺,通过技术改造、调试并投入生产使用后,使钨细泥精矿含WO3提高16.18%,细泥作业回收率提高29.71%。  相似文献   

9.
通过对某复杂褐铁矿进行磁化焙烧-磁选工艺条件的研究,在最佳焙烧温度750℃,焙烧时间50min,还原剂用量7%的磁化焙烧条件下,采用探索实验流程获得了铁精矿品位56.59%,铁回收率为74.60%的良好指标,对开发同类型矿石具有借鉴意义。  相似文献   

10.
鲕状赤铁矿特征及选冶技术进展   总被引:1,自引:0,他引:1  
张汉泉 《中国冶金》2013,23(11):6-10
论述了鄂西高磷鲕状赤铁矿的资源状况、矿物组成、矿石结构、矿物工艺学特征,对处理、利用该类矿石存在的问题进行了分析,介绍了常用反浮选、强磁选、磁化焙烧-弱磁选、直接还原焙烧、酸浸及微生物浸出等选冶技术的现状,展望了高磷鲕状赤铁矿还原-磁选、磁选-絮凝脱泥-反浮选等选矿联合流程的发展趋势。  相似文献   

11.
在对某铜尾矿多元素、矿物组成和铁物相分析结果基础上,针对磁性铁和钙铁榴石分别进行了磁选、重选探索试验,重-磁和弱磁-强磁联合回收工艺对比研究。结果表明:采用弱磁-强磁联合工艺,磁性铁品位65.40%、回收率11.12%,钙铁榴石精矿品位为92.88%,回收率74.12%,综合产率达到70.93%。  相似文献   

12.
梅山铁矿尾矿选矿工艺研究   总被引:1,自引:0,他引:1  
为了提高资源利用率,开展了梅山铁矿尾矿选矿工艺研究.针对品位低、粒度细、难选别的特性,共进行了6个工艺流程的试验.结果表明采用筛分-强磁-磁化焙烧-弱磁粗选-磨矿-弱磁工艺,精矿指标最优:铁品位58.02%、产率12.55%、回收率39.32%.结合梅山选矿实践,优化出强磁精矿作水泥添加剂、强磁精矿配矿销售、磁化焙烧、强磁重选等4个供选择的实施方案,初步经济评估表明磁化焙烧工艺可得到合格铁精矿9万t,经济效益最大.  相似文献   

13.
《钢铁冶炼》2013,40(7):481-488
Abstract

In order to develop and utilise cheap iron ores with low quality for cost reduction, a hematite ore from Xinjiang province was investigated to determine the iron increase and silicon reduction using ore dressing process experiments. Results showed that iron concentrate with 61%Fe and iron recovery of 66% were achieved through the process flowsheet of grinding, high intensity magnetic separation, regrinding of coarse concentrate, clean concentration by high intensity magnetic separation, roughing reverse floatation and cleaning reverse floatation of the high intensity concentrate, with the tailings from this latter stage fed back into the roughing reverse floatation stage.  相似文献   

14.
用硫铁矿烧渣生产铁精粉,可为铁矿资源日益紧张的钢铁工业提供炼铁原料。本文针对三种品级的硫铁矿烧渣,研究了各自适宜的处理工艺。对于TFe(铁品位)相对较高的棕色型烧渣,通过磨矿-弱磁选-强磁选工艺,依次分选出磁铁矿、赤铁矿,将TFe从61.21%提高到64.06%;对于TFe中等的红色型烧渣,通过磁化焙烧-磨选工艺,将烧渣在温度650~700℃、CO/(CO+CO2)为10%~20%的条件下焙烧,烧渣中赤铁矿可较好地还原转化成磁铁矿,再经弱磁选分离,可使TFe从53.51%提高到64%以上;对于TFe较低的黑色型烧渣,通过磨矿-弱磁选工艺,TFe从44.83%提高到64.73%。通过分选试验,三种硫铁矿烧渣的TFe都可提高到64%以上,回收率可达77%以上。本研究为不同类型的硫铁矿烧渣选择适宜的处理工艺提供了依据和借鉴。  相似文献   

15.
酒钢选烧厂排出尾矿中尚含有25%左右的铁,具有较高的回收价值。该尾矿中铁主要赋存于赤褐铁矿中,其次赋存于菱铁矿和磁铁矿中。为了回收尾矿中的铁,以兰炭作为还原剂,对该尾矿分别进行了磁化焙烧—弱磁选和强磁选—磁化焙烧—弱磁选研究,结果表明,未经强磁选预处理时,可得到铁品位54.50%,铁回收率86.26%的最优指标,该指标与目前现场指标接近;经强磁选处理后,可得到铁品位53.96%,铁回收率80.22%的最优指标,此流程在铁品位和回收率下降不多的前提下大大减少了焙烧和后磁选过程处理量,减少了能源的损失。  相似文献   

16.
The recycling application of bauxite residual is limited by its high content of iron, unfortunately, the complicated embedding feature of haematite makes it quite difficult to be removed efficiently and cleanly. In this paper, the process of selective reducing-magnetic separation without acid leaching is adopted to remove iron from bauxite residual. Different parameters such as carbon mass addition, roasting temperature, reduction time, magnetic field intensity and grain size on the iron removing ratio and iron yield are systemically investigated. It is indicated that haematite in bauxite residual is reduced to magnetite basically after 700°C roasting for 2.5?h by 1.0 wt-% carbon powder reducing, and the optimal conditions of magnetic separation are magnetic intensity of 235?mT and grain size of +150?μm, respectively. After selective reduce roasting–magnetic separation, iron content in the bauxite residual is sharply decreased from 7.98 to 1.34%, the iron removal ratio is 83.21%, and iron-rich magnetic concentrate contains about 30.48% iron, meanwhile, 87.03% of the iron in bauxite residual is enriched in the magnetic concentrate. The process is characterised by efficient and clean removal composite iron impurities from bauxite residual without using acid leaching.  相似文献   

17.
汪寅夫 《冶金分析》1982,40(1):22-27
磁性铁含量的测定是铁矿勘查中的基本分析项目之一。以往常采用手工磁选法对磁性铁分离后再进行测定,但手工磁选法不仅容易出现清洗不彻底或由于水流难以控制使磁性铁流失等现象,而且各实验室采用的永久磁铁规格不统一也会导致测定结果的重现性较差。实验自主设计了由框架、传动及淋洗系统3大部分组成的磁性铁分离装置,不仅提高了分离效率,还可一人对多个样品同时操作。对该装置应用于磁性铁分离时的条件进行了单因素和正交试验,并将其应用于铁矿石中磁性铁含量的测定。结果表明,磁性铁分离装置对磁性铁分离的最佳条件是磁场强度为80Gs,水流速度为30mL/min,翻转速度为70r/min,淋洗时间为3min;样品中磁性铁的含量对测定结果的影响较小。采用实验方法对铁矿石物相成分分析标准物质中磁性铁含量进行测定,结果的相对标准偏差(RSD,n=8)为0.80%和1.0%。采用实验方法对2个铁矿石实际样品进行测定,测定结果与标准方法YS/T 1047—2015基本吻合。  相似文献   

18.
汪寅夫 《冶金分析》2020,40(1):22-27
磁性铁含量的测定是铁矿勘查中的基本分析项目之一。以往常采用手工磁选法对磁性铁分离后再进行测定,但手工磁选法不仅容易出现清洗不彻底或由于水流难以控制使磁性铁流失等现象,而且各实验室采用的永久磁铁规格不统一也会导致测定结果的重现性较差。实验自主设计了由框架、传动及淋洗系统3大部分组成的磁性铁分离装置,不仅提高了分离效率,还可一人对多个样品同时操作。对该装置应用于磁性铁分离时的条件进行了单因素和正交试验,并将其应用于铁矿石中磁性铁含量的测定。结果表明,磁性铁分离装置对磁性铁分离的最佳条件是磁场强度为80Gs,水流速度为30mL/min,翻转速度为70r/min,淋洗时间为3min;样品中磁性铁的含量对测定结果的影响较小。采用实验方法对铁矿石物相成分分析标准物质中磁性铁含量进行测定,结果的相对标准偏差(RSD,n=8)为0.80%和1.0%。采用实验方法对2个铁矿石实际样品进行测定,测定结果与标准方法YS/T 1047—2015基本吻合。  相似文献   

19.
甘肃某含钛磁铁矿含钛6.58%,含铁21.46%,具有较大的回收价值.在工艺条件试验研究的基础上,采用"弱磁选铁-强磁预富集-钛浮选"的工艺流程回收有价金属,最终,实验室小型闭路试验可获得含铁61.75%,全铁回收率43.45%(磁性铁回收率达86.47%)的铁精矿和含钛50.10%,钛回收率60.23%的钛精矿,浮选作业回收率为85.94%,选别指标较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号