首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
井对间距与含水层采能区温度场的演化关系   总被引:5,自引:0,他引:5  
张远东  魏加华  汪集旸 《太阳能学报》2006,27(11):1163-1167
抽、灌井对之间的距离是地下水源热泵采能工程设计中的重要参数之一。该文应用数值模拟的方法对不同井对间距条件下地下含水层采能区温度场的演化进行了定量模拟,并对地温场的演化规律与井对距离之间的关系进行了理论分析。研究结果表明,抽、灌井对距离越大,抽水井温度变化速度越迟缓,且温度变幅越小。其原因是:井对距离越大,渗流区水动力影响范围越大,抽、灌区等效渗流速度越小,回灌水向抽水井运动过程中散热(吸热)越充分。  相似文献   

2.
为合理安排地下水源热泵系统的抽灌井布局,利用地下水数值模拟方法,通过Visual MODFLOW软件中的SEAWATV4热运移模块,概化地下水温度场运移过程,建立了符合研究区域水文地质特征的水热耦合数值模型,采用不同的变量对合理井距离进行模拟研究,模拟得出在水温变幅不超过2 ℃的前提下,抽灌量300、800、1 500、2 500 m3/d的合理井距分别为26.5、53.0、80.0、106.0 m,可知温度场的变化范围受井距和抽灌量影响明显并呈一定规律性,应根据水源热泵系统不同的抽灌量要求确定合理的抽灌井距离。  相似文献   

3.
冷热负荷失衡条件下采能区地温场的模拟研究   总被引:1,自引:0,他引:1  
以北京某地下水源热泵空调系统为例,利用地下水、热耦合数值模型技术,对冷、热负荷严重不平衡条件下地下水抽灌场地温度场的年内和年际变化进行了定量模拟预测研究,并对系统长期运行的可行性进行了论证.研究结果表明:抽水井和回灌井之间的距离相对较大,抽灌井之间的"热突破"程度较低;由于空凋系统的供暖负荷显著大于制冷负荷,抽灌区温度场将呈逐年下降趋势;抽灌场地是一个开放的系统,不断与外界发生能量交换.随着热泵空调系统的长期运行,抽灌区的温度下降速率越来越小,地温场渐趋稳定;由于热泵系统的年内冷、热负荷存在严重失衡,进而对热泵系统的运行效率将产生一定影响.  相似文献   

4.
针对地下水源热泵抽水井与回灌井布局模式对地下温度场的影响,通过建立地下水流与温度的耦合模型,从抽灌井布置间距及抽灌井数量角度模拟分析了不同布井模式下地下水温度的变化趋势和热贯通发生的基本特性。结果表明,同类井间距对热贯通影响不显著,抽灌井间距对抽水温度及热贯通时间影响较大;从热贯通发生时间来看,抽灌井数量越多热贯通发生的时间越延迟,但从温度偏离度角度分析,系统长期运行后抽灌井数量对抽水温度偏离度影响不显著。  相似文献   

5.
为研究某砾石回填抽灌同井地源热泵系统的换热性能,利用多功能数据采集仪,对绵阳市某砾石回填抽灌同井地源热泵系统的夏季取冷进行了现场测试。结果表明:当抽水流量从14m~3/h降到8 m~3/h时,抽水温度从23.2℃降到17.9℃,抽回水温差从1.6℃上升到2.5℃,而热贯通系数由77.1%降到3.9%。可见,抽水流董的变化对砾石回填抽灌同井的影响很大,得出最佳抽水流量为8 m~3/h,此时换热董为23.3 kJ/h,热贯通系数为3.9%。  相似文献   

6.
热渗耦合的地下水源热泵抽灌井传热数值模拟   总被引:1,自引:0,他引:1  
基于达西定律,分析了饱和区土壤中地下水源热泵抽灌井传热机制,构建了热渗耦合共同作用下的数学模型,研究了有无地下水渗流及渗流速度对抽灌井周围温度场变化的影响,使用COMSOL Multiphysics软件对建立的模型进行了分析模拟.实例结果表明,该模型具有较好的适用性,为系统的优化设计与参数合理匹配提供了理论支持.  相似文献   

7.
周强  王楠 《水电能源科学》2019,37(9):124-127
为研究一抽多灌井群的最佳布置方式,基于FLOW HEAT软件,将抽水井附近的灌水井群采用集中环绕型、直线型等8种不同布置方式建立数学模型,分析抽水井水温变化规律、温度和渗流场及最佳井距。结果表明,采用以抽水井为中心回灌井环绕布置方式时井群影响范围较小,渗流效果也较好,但抽水井水温较高易发生热贯通现象;采用直线型布置方式时抽水井水温变化较慢、井群渗流效果一般;井群水温随井距的增加逐渐降低。综合考虑,抽水井在回灌井中间的直线型布置且井距为51.63m为最佳布置方式。  相似文献   

8.
以某拟建地下水源热泵系统为例,针对地缘热泵空调系统工作井优化布设问题,通过建立理想的对井抽-灌概念及数学模型,模拟了特定水流及热源条件下抽水、回灌井不同间距夏季运行期间地下水热量运移过程.数值模拟结果表明,抽、灌井不同井间距对热泵系统夏季运行期间地下水热量运移过程影响显著,该方法为优化布设抽、灌井的合理间距提供了实现热泵系统良好运行的理论依据.  相似文献   

9.
基于CFD的填砾抽灌同井数值模拟   总被引:1,自引:0,他引:1  
文章根据已有的填砾抽灌同井砂箱实验台,建立了两种不同尺寸的多区域耦合三维CFD模型,选取了热源井的抽水温度、逐时取热量和累计取热量进行模型验证。热源井抽水温度实验值与模拟值的吻合度较高,两种模型25 min内热源井累计取热量的相对误差分别为3.28%和5.56%。分析结果表明:砂箱的几何尺寸会对含水层流场和温度场的变化造成影响;回填砾石区会发生流贯通,中间隔断区的宽度与抽、回水区的间距会影响回水进入抽水区的速率,因此,应增大回水区与砂箱上顶板之间以及热源井与砂箱四壁之间的距离;应当增大中间隔断层的宽度以及抽、回水区的间距,以此来延缓流、热贯通的形成。  相似文献   

10.
基于有限长线热源模型,考虑地下水的渗流作用,对比分析无渗流工况与渗流工况下地下土壤温度场分布,结果表明:地下水渗流有利于地下热量的扩散,渗流工况下平均温度与最高温度较无渗流情况分别下降约5℃、4℃,温度场的热量累积得到抑制和减缓;并分析长方形埋管布置形式下的土壤温度场,讨论不同方向的地下水渗流工况对地下土壤温度场分布的影响,对于横纵向埋管数量不同的管群,沿埋管数量少的方向渗流,其土壤温度降低更显著。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

19.
液压系统常见的故障诊断及处理   总被引:2,自引:0,他引:2  
任何工程机械式液压设备使用时出现故障是不可避免的。但是怎样确定故障的原因及找到好的解决方法,这是使用者最关心的问题。讲述了液压系统常见的故障及其排除方法。  相似文献   

20.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号