首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Flame‐retardant thermoplastic vulcanizates (TPVs) of natural rubber (NR)/polypropylene (PP) (60/40 wt %) blends filled with alumina trihydrate (ATH) were prepared with an internal mixer. To increase the properties of flame‐retardant NR/PP TPV, the new mixing method, stepwise masterbatch mixing (SMB) method was adopted. The effects of SMB method along with different ATH loadings on microstructure and properties of NR/PP TPVs were investigated. Conventional one‐step mixing (CV) method was also studied for comparison. Transmission electron microscopy analysis showed that different processes led to a variation in microstructural homogeneity, which imposed various effects on blend properties. The mechanical properties of TPVs changed with ATH loading, and the strength of the samples obtained from SMB method was higher than those of CV method. LOI and cone calorimetry tests revealed that the flame retardancy of NR/PP blends dramatically increased at higher ATH loading. Furthermore, the increment level of flame retardancy was accelerated in the blends produced particularly through SMB method, resulting from homogeneity of local ATH distribution in NR/PP blend. Greater combustion resistance of blends prepared from SMB route were confirmed by thermogravimetry and pyrolysis‐gas chromatography–mass spectrometry techniques. Finally, a burning mechanism between filler structure and flammability of NR/PP TPVs obtained from CV and SMB methods was discussed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46231.  相似文献   

2.
Clay containing polypropylene (PP) nanocomposites were prepared by direct melt mixing in a twin screw extruder using different types of organo‐modified montmorillonite (Cloisite 15 and Cloisite 20) and two masterbatch products, one based on pre‐exfoliated clays (Nanofil SE 3000) and another one based on clay–polyolefin resin (Nanomax‐PP). Maleic anhydride‐grafted polypropylene (PP‐g‐MA) was used as a coupling agent to improve the dispersability of organo‐modified clays. The effect of clay type and clay–masterbatch product on the clay exfoliation and nanocomposite properties was investigated. The effect of PP‐g‐MA concentration was also considered. Composite morphologies were characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscopy (FEG‐SEM), and transmission electron microscopy (TEM). The degree of dispersion of organo‐modified clay increased with the PP‐g‐MA content. The thermal and mechanical properties were not affected by organo‐modified clay type, although the masterbatch products did have a significant influence on thermal and mechanical properties of nanocomposites. Intercalation/exfoliation was not achieved in the Nanofil SE 3000 composite. This masterbatch product has intercalants, whose initial decomposition temperature is lower than the processing temperature (T ~ 180°C), indicating that their stability decreased during the process. The Nanomax‐PP composite showed higher thermal and flexural properties than pure PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Nanocomposites have been prepared by melt mixing poly(propylene) (PP) and different levels of a premixed montmorillonite‐organoclay masterbatch (PP/clay concentrate). Melt mixing was achieved using a Gelimat, a high‐speed thermokinetic mixer. The Gelimat system is designed to handle difficult compounding and dispersion applications and can achieve mixing, heating, and compounding of products within a minute. Therefore, the thermal history of the compounded polymer is short, which limits degradation. The structure and properties of the nanocomposites prepared with a Gelimat were compared to ones prepared with a twin‐screw extruder. The structure and properties of PP/clay nanocomposites were compared by TEM, X‐ray diffraction, mechanical testing, and rheological analysis. Results indicate that a better dispersion of the clay can be achieved by thermokinetic mixing when compared to extrusion, resulting in better mechanical properties. Calculations, based on simplifying assumptions, showed that the shear rates generated in a Gelimat are at least one order higher than those generally generated in an extruder. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1557–1563, 2005  相似文献   

4.
Dynamically vulcanized thermoplastic elastomer (TPE) nanocomposites based on polypropylene (PP), ethylene‐propylene diene monomer (EPDM) and cloisite 15A were prepared via direct melt mixing in a co‐rotating twin‐screw extruder. The mixing process was carried out with optimized processing parameters (barrel temperature = 180°C; screw speed = 150 rpm; and feeding rate = 0.2 kg/hr). The formulation used to prepare the nanocomposites was fixed to 75/20/5 (PP/EPDM/Cloisite©15A), expressed in mass fraction. Effect of mixing sequence on the properties of vulcanized and unvulcanized (TPE) nanocomposites prepared under similar conditions was investigated using X‐ray diffraction (XRD) and a tensile testing machine. Results showed that the sequence of mixing does affect the properties of final TPE nanocomposites. Accordingly, nanocomposite samples prepared through mixing the preblended PP/clay masterbatch with EPDM phase, show better clay dispersion within the polymer matrix. J. VINYL ADDIT. TECHNOL., 22:320–325, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
Polypropylene (PP)‐based nanocomposites containing 4 wt% maleic anhydride grafted PP (PP‐g‐MA) and 2 wt% Cloisite 20A (C20A) were prepared using various processing devices, viz., twin‐screw extruder (TSE), single‐screw extruder (SSE), and SSE with an extensional flow mixer (EFM). Two processing methods were employed: (I) masterbatch (MB) preparation in a TSE (with 10 wt% C20A and clay/compatibilizer ratio of 1:2), followed by dilution in TSE, SSE, or SSE + EFM, to 2 wt% clay loading; (II) single pass, i.e., directly compounding of dry‐blended PP‐g‐MA/clay in TSE, SSE, or SSE + EFM. It has been indicated that the quality of clay dispersion, both at micro‐ and nanolevel, of the nanocomposites depends very much on the operating conditions during processing, such as mixing intensity and residence time, thus affecting the mechanical performance. Besides that the degradation of the organoclay and the matrix is also very sensitive to these parameters. According to results of X‐ray diffraction, field emission gun scanning electron microscopy, transmission electron microscopy, and mechanical tests, the samples prepared with MB had better overall clay dispersion, which resulted in better mechanical properties. The processing equipment used for diluting MB had a marginal influence on clay dispersion and nanocomposite performance. POLYM. ENG. SCI., 47:1447–1458, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
The melt processability and physico‐mechanical properties of blends of natural rubber (NR) and ethylene propylene diene rubber (EPDM) containing different dosages (0–10 phr) of phosphorylated cardanol prepolymer (PCP) were studied in unfilled and china‐clay‐filled mixes. The plasticizing effect of PCP in the blends was evidenced by progressive reduction in power consumption of the mixing and activation energy for melt flow with an increase in the dosage of PCP. The PCP‐modified blend vulcanizates showed higher tensile properties and tear strength despite a decrease in the chemical crosslink density (CLD) index. This is presumably due to the formation of a crosslinked network structure of PCP with the rubbers and improved dispersion of the filler particles in the rubber matrix, as evidenced by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Thermogravimetric analysis showed an increase in thermal stability of the blend vulcanizate in presence of 5 phr of PCP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5123–5130, 2006  相似文献   

7.
The properties of styrene–acrylonitrile (SAN) and ethylene–propylene–diene (EPDM) blends containing different types of calcium carbonate filler were studied. The influence of mixing type process on the blend properties was also studied. Two different mixing processes were used. The first one includes mixing of all components together. The other process is a two‐step mixing procedure: masterbatch (MB; EPDM/SAN/filler blend) was prepared and then it was mixed with previously prepared polymer blend. Surface energy of samples was determined to predict the strength of interactions between polymer blend components and used fillers. The phase morphology of blends and their thermal and mechanical properties were studied. From the results, it can be concluded that the type of mixing process has a strong influence on the morphological, thermal, and mechanical properties of blends. The two‐step mixing process causes better dispersion of fillers in blends as well as better dispersion of EPDM in SAN matrix, and therefore, the finest morphology and improved properties are observed in blends with MB. It can be concluded that the type of mixing process and carefully chosen compatibilizer are the important factors for obtaining the improved compatibility of SAN/EPDM blends. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Natural rubber (NR)/poly(ethylene‐co‐vinyl acetate) (EVA) blend–clay nanocomposites were prepared and characterized. The blend nanocomposites were prepared through the melt mixing of NR/EVA in a ratio of 40/60 with various amounts of organoclay with an internal mixer followed by compression molding. X‐ray diffraction patterns revealed that the nanocomposites formed were intercalated. The formation of the intercalated nanocomposites was also indicated by transmission electron microscopy. Scanning electron microscopy, used to study the fractured surface morphology, showed that the distribution of the organoclay in the polymer matrix was homogeneous. The tensile modulus of the nanocomposites increased with an increase in the organoclay content. However, an increase in the organoclay content up to 5 phr did not affect the tensile strength, but the organoclay reduced this property when it was increased further. This study also indicated that a low silicate content dispersed in the blend matrix was capable of increasing the storage modulus of the material. The addition of the organoclay also increased the decomposition temperature of the NR/EVA blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 353–362, 2006  相似文献   

9.
(Low‐density polyethylene) (LDPE)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder by using different mixing methods. Zinc‐neutralized carboxylate ionomer was used as a compatibilizer. Blown films of the nanocomposites were then prepared. The effect of mixing method on the clay dispersion and properties of the nanocomposites was evaluated by wide‐angle X‐ray diffraction analysis, mechanical properties, thermal properties, and barrier properties. The structure and properties of nanocomposites containing different amounts of nanoclay prepared by selected mixing techniques were also investigated. It was found that melt compounding of Surlyn/clay masterbatch with pure LDPE and Surlyn (two‐step‐a method) results in better dispersion and intercalation of the nanofillers than melt mixing of LDPE/Surlyn/clay masterbatch with pure LDPE and surlyn (two‐step‐b method) and direct mixing of LDPE with clay. The films containing ionomer have good barrier properties. A wide‐angle X‐ray diffraction pattern indicates that intercalation of polymer chains into the clay galleries decreases by increasing the clay content. Barrier properties and tensile modulus of the films were improved by increasing the clay content. In addition, tensile strength increased in the machine direction, but it decreased in the transverse direction by increasing the clay content. DSC results showed that increasing the clay content does not show significant change in the melting and crystallization temperatures. The results of thermogravimetric analysis showed that the thermal stability of the nanocomposites decreased by increasing the clay content more than 1 wt%. J. VINYL ADDIT. TECHNOL., 21:60–69, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
Summary: Poly(propylene) (PP)/clay nanocomposites have been prepared via a novel reactive compounding approach, in which an epoxy based masterbatch consisting of 20 wt.‐% clay was introduced to poly(propylene) with the aid of a maleic anhydride grafted PP (MAPP). The masterbatch was prepared using a recently developed “slurry compounding” technique. After melt compounding, most clay particles have been exfoliated and dispersed into small stacks with several clay layers. WAXD data shows that the dispersion of clay is better at low clay content or high MAPP content. Due to the novelty of the preparation process and complication of the system, the tensile properties of nanocomposites exhibit some unique tendencies with varying the content of MAPP or masterbatch. It is believed that the yield strength and Young's modulus can be dramatically improved after minimizing the excess of unreacted epoxy and optimizing the dispersion of clay.

TEM micrograph of PP/clay nanocomposites prepared with epoxy based masterbatch.  相似文献   


11.
The morphological and rheological properties of thermoplastic elastomer nanocomposites (TPE nanocomposites) were studied using different viscosities of polypropylene (PP) and ethylene‐propylene‐diene monomer (EPDM) rubber content (20, 40, 60 wt%). The components, namely EPDM, PP, Cloisite 15A, and maleic anhydride‐modified PP as compatibilizer, were compounded by a one‐step melt mixing process in a laboratory internal mixer. The structure of the nanocomposites was characterized with X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and rheometry in small amplitude oscillatory shear. The distribution state of the clay between the two phases (PP and EPDM) was found to be dependent on the viscosity ratio of PP to EPDM. In the nanocomposites prepared based on low viscosity PP (LVP) and EPDM, the clay was mostly dispersed into the PP phase and the size of the dispersed rubber particles decreased in comparison with unfilled but otherwise similar blends. However, the dispersed elastomer droplet size in the high viscosity PP (HVP) blends containing 40 and 60% EPDM increased with the introduction of the clay. For TPE nanocomposites, the dependence of the storage modulus (G′) on angular frequency (ω) followed a clear nonterminal behavior. The increase in the storage modulus and the decrease in the terminal zone slope of the elastic modulus curve were found to be larger in the LVP nanocomposite in comparison with the HVP sample. The yield stress of nanoclay‐filled blends prepared with LVP increased more than that of HVP samples. The tensile modulus improved for all nanocomposites but a higher percentage of increase was observed in the case of LVP samples. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

12.
Nanocomposites based on polypropylene (PP) and unmodified Montmorillonite were prepared using a novel elaboration route based on a water‐assisted extrusion process. Unmodified Montmorillonite, high shear compounding together with injection of aqueous suspension and reactive processing technology were used. Different aqueous suspensions containing cationic or anionic surfactants, and a compatibilizer (PP‐g‐MA) were injected during extrusion to promote clay dispersion. For a comparison purpose, a commercial PP/clay masterbatch was melt mixed to PP. Structural, morphological, and rheological characterizations indicate clearly that the cationic suspensions ease the dispersion of clay platelets in the PP matrix. No full exfoliation is, however, obtained, and the system remains still less homogeneous than the nanocomposite based on the commercial masterbatch. Nevertheless, mechanical and thermal characterizations of the nanocomposites based on cationic surfactants demonstrate the efficiency to disperse clay in the polymer matrix, and the effect on the ductility compared to usual PP nanocomposites is promising. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

13.
The present work introduces a new method for the characterization of morphology development and kinetics of nanoclay distribution in hydrogenated acrylonitrile butadiene rubber (HNBR)/natural rubber (NR) blends based on the measurement of electrical conductance during the mixing process. It was found that the online measurable electrical conductance of rubber-clay mixtures, which is originated from the release of the ionic surfactant from the nanoclay galleries during the mixing process depends on two factors: the phase specific localization of nanoclay and the change of the blend morphology. The former is due to the favorable interaction of nanoclay with one of the blend phases whereas the latter is caused by the compatibilization effect of nanoclay. It became obvious that the presence of clay influences the morphology of the blends drastically; a significant change from the co-continuous phase morphology into an island-matrix morphology was observed in HNBR/NR/clay nanocomposites. Thus, the method of the online conductance promises to be a powerful tool to study the nanoclay dispersion processes and to monitor the quality of rubber-nanoclay composites.  相似文献   

14.
Cocontinuous morphology was obtained for an asymmetric composition of polypropylene/polyamide 6 (70/30 w/w) blend by controlling melt compounding sequence of PP, PA6, and organoclay. Three different compounding sequences were tested: direct melt mixing of all the components, melt mixing of PP with PA6/organoclay masterbatch, and melt mixing of PP with premelted PA6/organoclay masterbatch. Only the third method promotes cocontinuous morphology. In all three cases, organoclay locates preferentially in the PA6 phase and at the interface, although the level of organoclay dispersion is poorer in the case of direct mixing than in the two‐masterbatch approaches. The morphology evolution processes of the three different compounding sequences were investigated and revealed that the main reason for the formation of cocontinuous morphology in the third method is the inhibiting effect of organoclay preincluded in the premelted PA6 phase on phase inversion. The viscosity of PA6 phase and the barrier effect of organoclay were confirmed to be two key factors in promoting cocontinuous structure. Dynamic mechanical analysis shows that the blend having cocontinuous morphology displays higher storage modulus than those having matrix‐dispersed morphology at the same organoclay loading. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
PP/NPA6 blends composed of poly(propylene) (PP) and polyamide 6/clay nanocomposites (NPA6) were prepared by twin‐screw extrusion and melt‐drawn into ribbons by a ribbon extrusion process. The influence of clay on the morphology of PP/NPA6 ribbons was investigated by means of field‐emission scanning electron microscopy and optical microscopy. The results show that at low clay content (3, 5 wt%), NPA6 exhibited continuous lamellar structure in PP as pristine PA6 did in a PP/PA6 blend, but at a higher clay content (10 wt%) only ellipsoids or elongated ellipsoids were observed. In order to explain the morphological difference, two factors, ie the compatibilization effect and melt rheology, have been taken into consideration. It has been found that both factors, and probably mainly the variation in melt rheology, were responsible for the morphological difference in the PP/NPA6 blends with different clay contents under the extensional flow field. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
In this study, polymer‐clay nanocomposites of various concentrations were prepared by ultrasonically assisted polymerization and melt‐mixing processes. A sonication process using power ultrasonic waves was employed to enhance nano‐scale dispersion during melt‐mixing of polymer blends and organically modified clay. We expected enhanced breakup of layered silicate bundles and further reduction in the size of the dispersed phase, with better homogeneity compared to the different immiscible blend pairs. X‐ray diffraction (XRD) and Transmission Electron Microscopy (TEM) were used to characterize the structures of the nanocomposites. The rheological behaviors of the obtained nanocomposites were measured with parallel plate rheometry. It was found that the ultrasound‐assisted process successfully generated exfoliated nanocomposites and promoted in‐situ compatibilization of the matrix comprising an immiscible pair of polymers in a blend. The resulting nanocomposite exhibited superior thermal stability and elastic modulus compared to the base polymer. Polym. Eng. Sci. 44:1198–1204, 2004. © 2004 Society of Plastics Engineers.  相似文献   

17.
Three types of polypropylene‐grafted silica (PGS‐2 K, PGS‐8 K and PGS‐30 K) with different grafting chain lengths were prepared. After melt‐blending PGS with polypropylene (PP), we studied the PP/PGS interface properties and the influence of PP/PGS interfaces on mechanical properties of nanocomposites. The strong matrix/particle interface was observed in PP/PGS‐30 K nanocomposites with 5 wt % particle loading as evidenced by 2.5 °C increased glass transition temperature (Tg) compared with neat PP, whereas the weak matrix/particle interface was observed in PP/PGS‐2 K nanocomposites with decreased Tg. The variations in the matrix/particle interfacial strength lead to a transition in the yield stress of nanocomposites. Compared with the unfilled PP, the yield stress of the PP/PGS‐2 K nanocomposites is decreased by 0.7 MPa, and the yield stress of the PP/PGS‐30 K nanocomposites is enhanced by 1.4 MPa. In addition, benefiting from good dispersion, the PP/PGS‐masterbatch nanocomposites with a strong matrix/particle interface not only exhibit increased Young's modulus and yield stress, but also the strain at break remains in line with the unfilled PP, which is in contrast to the conventional wisdom that the gain in modulus and strength must be at the expense of the decreased break strain. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45887.  相似文献   

18.
Nanocomposites of linear low-density polyethylene (LLDPE)/natural rubber (NR)/liquid natural rubber (LNR) blend denoted as TPNR with montmorillonite-based organoclay (OMMT) were prepared using melt blending method. The melt blending of LLDPE/NR/LNR with a composition of 70:20:10 formed blends. For better dispersion of nanoclay in the TPNR blend, MA-PE was used as a coupling agent. The nanoclay dispersion was investigated by X-ray diffraction (XRD), and a novel method using permeability measurements data in a permeability model. The measured d-spacing data proved a good dispersion of nanoclay at low clay contents. The permeability model for flake-filled polymer was used to estimate the aspect ratio of nanoclay platelets in the blend nanocomposites. The oxygen barrier property of the TPNR blend improved about two-fold by adding only 2 wt% of organoclay. Differential scanning calorimetry showed an increase in cystallinity up to 20% suggesting an increase in spherulite growth, by the increased in melting temperature. The increase in the barrier property of the blend with the induction in crystallinity indicates the dominant role of organoclay platelets in barrier improvement. Scanning electron micrographs of tensile fracture surface of the nanocomposite, exhibited a very ductile surface indicating a good compatibility of LLDPE and NR and also, a possible contribution of nanoparticles to the deformation mechanism, such as extensive shear yielding in the polymer blend. The transmission electron micrograph, showed an intensive intercalation structure and exfoliation structure with the presence of MA-PE.  相似文献   

19.
Polystyrene‐modified natural rubber (SNR) was prepared in the laboratory and subsequently used as compatibilizer in polypropylene/natural rubber (PP/NR) blends. The effect of SNR (at 5%, 10%, 15% and 20% by volume) in PP/NR (70/30) blend was studied by maintaining the rubber volume while PP volume was replaced by SNR accordingly. The sequence of mixing was found to affect the blend morphology and tensile properties. The effect of curatives on the tensile properties of the blends was also investigated. The addition of curatives into the rubbers in PP/NR/SNR improved the tensile properties significantly compared with the PP/NR reference blend. For a semi‐efficient curative system, SNR loading at 10% gave the best overall tensile properties, while for an efficient curative system, 5% SNR loading resulted in improvements in tensile strength and stiffness of over 20% and 40%, respectively, compared with the reference. © 2002 Society of Chemical Industry  相似文献   

20.
Attempts were made to study the effect of reactive compatibilization via Friedel–Crafts alkylation reaction, using AlCl3 as a catalyst, on rheology, morphology, and mechanical properties of polypropylene/polystyrene ( PP/PS) blends in the presence of an organoclay (Cloisite 15A). During the reactive compatibilization process, PS showed much more degradation than that of PP in the presence of AlCl3. It was found that the effect of generation of PP‐g‐PS copolymer at the interface of the PP/PS blend dominates the effects of degradation of PS and PP phases, which manifested itself by increased toughness as well as uniform dispersion of the dispersed PS particles in the PP matrix. Generation of PP‐g‐PS copolymer was confirmed by using Fourier‐transform infrared analysis. By using rheological and X‐ray diffraction analyses, it was shown that the clay had higher affinity to PS than that of PP. It was also shown that the clay located at the interface of PP and PS phases, leading to increased relaxation time of the deformed PS dispersed particles, exhibited higher dispersion in PP/PS blend, which resulted in higher ductility of the blend. By using the results of rheological studies, it was concluded that during reactive compatibilization of the blend nanocomposite, the clay migrated into the dispersed PS phase, which was confirmed by scanning electron microscopy analysis. It was demonstrated that the rheological studies have a reliable sensitivity to the clay partitioning and phase morphology of the studied blends and blend nanocomposites . J. VINYL ADDIT. TECHNOL., 24:18–26, 2018. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号