首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Low-k dielectric carbon-doped silicon dioxide films created by Plasma Enhanced Chemical Vapor Deposition (PECVD) using a six-station sequential deposition system exhibit different glass transition behavior from films created by PECVD in a single deposition station. The enhanced glass transition temperature (Tg) for the PECVD thin films of a layer consisting of six sub-layer deposited in a six-station sequential deposition system to the Tg for films of a single layer deposited in a single deposition system is traced back to the introduced film interface effect inherent to the different deposition methods. Both types of PECVD thin films range in thickness from 50 to 1255 nm and show an increasing Tg with decreasing film thickness. The observed glass transition behavior for films with six sub-layers can be well explained by a theoretical model of thickness dependent Tg for multiple sub-layers obtained by modifying the currently existing theoretical model for the single layer thickness dependent Tg behavior, which explains the observed thickness dependent Tg for single layer PECVD thin films.  相似文献   

2.
The optical properties of hydrogenated amorphous silicon thin films prepared by a new thermocatalytic plasma enhanced chemical vapor deposition (PECVD) method are here reported for the first time. The transmission spectrum of the film, deposited at a rate of 1.5 nm/s, was measured between 500 and 1100 nm. The envelopes of the transmission spectrum interference maxima and minima were analyzed to reveal the absorption coefficient α(λ@#@), the refractive indexn(λ), the average thickness of the film (791 nm) and the variation of the thickness (11.4 nm), using an analysis which takes into account film inhomogeneity. The modified Newton's method of numerical analysis was used to obtain the optical parameters. The optical band gap ε0} was determined to be 1.69 eV from the absorption coefficient spectrum, commensurate with values quoted for lower deposition rate PECVD films. The value for ε0}, the small variation of the film thickness, and a value for the defect density of 3.7 x 1015}cm-3} determined for similar material in other work indicate that the thermocatalytic PECVD method can produce acceptable quality films at a high deposition rate.  相似文献   

3.
The a-Si∶H films with different thickness smaller than 1 μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition conditions. The effect of different thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity, photoconductivity and threshold voltage increase, the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ratio of on/off state first maximize and then reduce.  相似文献   

4.
The a -Si:H film with different thickness smaller than 1μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition contitions.The effect of diferent thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity ,photoconductivity and threshold voltage increase,the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ration of on/off state first maximize and then reduce.  相似文献   

5.
A series of 3C-SiC films with varied film thickness up to 17 μm have been grown on Si(1 0 0) by chemical vapor deposition, and studied by photoluminescence, Raman scattering, Fourier transform infrared transmission and reflectance measurements. Typical key behaviors on these optical spectra are investigated. Thinner (<3 μm) films have their optical spectral features, mainly associated with defects. High quality of single crystalline cubic SiC materials can be obtained from thicker (>10 μm) films, evidenced by optical spectra. There exists a tensile stress in the 3C-SiC film grown on Si, affecting greatly the optical features. Its measurements have leaded to a formulas on two deformation potentials, a and b.  相似文献   

6.
CdTe thin films of different thicknesses were deposited on polymer substrates for flexible optical devices applications. X-ray diffractogram of different thicknesses for CdTe films are measured and their patterns exhibit polycrystalline nature with a preferential orientation along the (111) plane. The optical constants of CdTe films were calculated based on the measured transmittance spectral data using Swanepoel's method in the wavelength range 400–2500 nm. The refractive index n and absorption index k were calculated and the refractive index exhibits a normal dispersion. The refractive index dispersion data followed the Wemple–DiDomenico model based on single oscillator. The oscillator dispersion parameters and the refractive index no. at zero photon energy were determined. The possible optical transition in these films is found to be allowed direct transition with energy gap increase from 1.46 to 1.60 eV with the increase in the film thickness. CdTe/flexible substrates are good candidates in optoelectronic devices  相似文献   

7.
The aim of this paper is to provide a better understanding of hydrogenated amorphous silicon thin films (a-Si:H) in relation to their optical properties: refractive index, optical gap, absorption coefficient, thickness and surface roughness. The transmission spectrum of the films, deposited with various rf discharge power densities by an optimized plasma enhanced chemical vapor deposition (PECVD) method, at a high rate (>10 Å/sec), was measured over a range in wavelength from 500 to 1100 nm. An approximate model is utilized to describe the surface roughness. In this model, the surface roughness is modeled as a mixed layer of 50 percent of a-Si:H and 50 percent of air and the optical constant of the rough layer is derived using the Bruggemann effective medium approximation (EMA). The gradient iteration method of numerical analysis is used to solve the nonlinear equations in the study. Our results show that the potential underestimation of refractive index and resulting overestimation of film thickness can be overcome by considering the reflection of the rough surface. The method is carried out on the transmission data and the influence of rf discharge power density on the properties of the film is discussed in detail.  相似文献   

8.
Undoped and cobalt-doped zinc oxide (CZO) polycrystalline piezoelectric thin films (Co: 3, 5 at.%) using a series of high quality ceramic targets have been deposited at 450 °C onto glass substrates using a pulsed laser deposition method. The used source was a KrF excimer laser (248 nm, 25 ns, 2 J∕cm2). X-ray diffraction patterns showed that the Co-doped ZnO films crystallize in a hexagonal wurtzite type structure with a strong (0 orientation, and the grain sizes calculated from these patterns decrease from 37 to 31 nm by increasing Co doping. The optical waveguiding properties of the films were characterized by using a prism-coupling method. The distinct M-lines of the guided transverse magnetic (TM) and transverse electric (TE) modes of the ZnO films waveguide have been observed. With the aim of study the optical properties of the ZnO films, an accurate refractive index and thickness measurement apparatus was set up, which is called M-lines device. An evaluation of experimental uncertainty and calculation of the precision of the refractive index and thickness were developed on ZnO films. The optical transmittance spectra showed a good transparency in the visible region. Calculated optical band gap varying from 3.23 to 3.37 eV when the content of Co doping increases from 0 to 5 at.%.  相似文献   

9.
The properties of low-k SiCOH film deposited by plasma-enhanced chemical vapor deposition using trimethylsilane are reported here. The deposition process was performed at different temperatures from 200 to 400 °C. The influence of deposition temperature on the films were characterized using Fourier transform infrared spectroscopy (FTIR) to understand its impact on the studied properties. The films were annealed at ∼450 °C in an inert ambient after deposition in all the cases. The deposition rate decreases with increase in deposition temperature. The refractive index of the films increases as a function of deposition temperature. From FTIR spectra, OH-related bonds were not detected in films even when deposited at 200 °C. The Si-CH3 bonds were detected in all the films and decreased monotonically from 200 to 400 °C. All deposition conditions studied resulted in films with dielectric constant less than 3, the lowest being ∼2.7 when deposited at 200 °C. All films exhibited good thermal stability.  相似文献   

10.
采用等离子体增强化学气相沉积法(PECVD)在单晶硅衬底上制备了氮化硅薄膜,分别使用膜厚仪、椭圆偏振仪等手段对薄膜的厚度、折射率等参数进行了表征。研究了硅烷氨气流量比、极板间距等工艺参数对氮化硅薄膜性能的影响,发现当硅烷氨气流量比增加时,薄膜厚度和折射率均随之增加,并发现退火工艺可以有效降低氮化硅薄膜的氢氟酸腐蚀速率。  相似文献   

11.
Cd1−xCoxO thin films (with molar ratios x=0.0–8.0%) were grown onto glass substrates via the sol–gel spin coating technique. XRD results indicate that a CdO single phase with a cubic polycrystalline structure is formed. The crystallinity of CdO thin films is gradually deteriorated with increasing the Co ratio. AFM images of the films confirm the decrease of the grain size of the CdO films with increasing Co content. The direct optical band gap is red shifted from 2.580 eV to 2.378 eV with the increase of Co content. The refractive index, the dispersion parameters, and the optical conductivity of CdO thin films showed an enhancement with increasing cobalt dopant ratio. The correlation between the structural modifications and the resultant optical properties are reported.  相似文献   

12.
The effect of deposition methods on dielectric breakdown strength of PECVD low-k dielectric carbon doped silicon dioxide films is investigated. I-V measurements were performed using metal-insulator semiconductor structures for carbon doped silicon dioxide thin films with various thicknesses by single deposition station and six sequential deposition systems. I-t measurements are also performed for films with the thickness of 32 nm prepared using both deposition methods. Comparison studies have been carried out for the thickness dependence, temperature dependence, conduction mechanism and time dependence of dielectric breakdown for carbon doped silicon dioxide with single layer and six sub-layers. Results demonstrated that both films follow the newly obtained relationship between dielectric strength EB and thickness d, i.e. EB∝(ddc)n, but with a lower exponential factor n and a larger thickness limit dc for films with six sub-layers. It is also demonstrated that films with six sub-layers have a higher dielectric strength in all the thickness and temperature ranges, a thickness independent thermal behavior and a longer lifetime under constant voltage stressing. This indicates that by tuning the deposition methods smaller thickness with desired dielectric properties can be achieved.  相似文献   

13.
以SiH4为先驱气体,采用低频等离子体增强化学气相沉积(LF-PECVD)方法在Si衬底上制备了氢化非晶硅(a-Si∶H)薄膜。在薄膜沉积过程中,工艺参数将会影响非晶硅薄膜的沉积速率和光学性能。通过反射式椭圆偏振光谱仪(SE)研究了SiH4气体流量、工作压强和衬底温度等条件对氢化非晶硅沉积速率和光学性质的影响。实验结果表明,氢化非晶硅沉积速率随着SiH4流量、工作压强和衬底温度的改变而规律地变化。相比于SiH4流量和工作压强,衬底温度对折射率、吸收系数和折射率的影响更大。各工艺条件下所制备的非晶硅薄膜光学禁带宽度在1.61~1.77eV。  相似文献   

14.
The aim of this work is to determine optimal deposition parameters of silicon nitride for optical applications. The authors present the investigation of hydrogenated amorphous silicon nitride SiNx:H deposited by the low temperature PECVD method in high frequency reactors. The study of hydrogen bonds in the SiNx:H thin films were detailed. The impact of NH3, SiH4 and N2 flow ratio and radio frequency power on optical coefficients in relation to chemical composition and roughness of the film is studied. The correlation between chemical bonds (N–H, Si–H) and refractive index and extinction coefficients is systematically verified. The experimental results show that the films with high refractive indexes superior to 2.05 and low roughness of about 0.35 nm can be achieved for optoelectronics applications by tuning the flow ratio or decreasing the RF power. A variety of processes have been suggested as compatible with low thermal budget (under 350 °C) in order to integrate optical waveguides with lower loss. In particular, the incorporation of N2 as dilution gas is suited to the fabrication of SiNx:H films optical waveguide requiring low N–H bonds, low concentration of hydrogen [H] and high refractive index.  相似文献   

15.
We investigated the microstructure and the stress of high-k Hf-Y-O thin films deposited by atomic layer deposition (ALD). These hafnium oxide based films with a thickness of 5-60 nm stabilized in crystal structure with yttrium oxide by alternating the Hf- or Y-containing metal precursor during deposition. The microstructure was investigated by XRD and TEM in dependence of substrate and deposition temperature. The film stress was monitored during thermal cycles up to 500 °C using the substrate curvature method on (1 0 0)-Si wafer material with or without 10 nm TiN bottom electrode as well as on fused silica. It was observed that crystallinity and phases are depending on deposition temperature and film thickness. During thermal treatment the films crystallize depending on deposition temperature, yttrium content and substrate material at different temperatures. Crystallization of the films depends strongly on yttrium content. The highest reduction of 720 MPa was observed for films deposited with a Hf:Y cycle ratio of 10:1 where 6.2% of all metal atoms are replaced by yttrium. These Hf-Y-O films also show the highest k-value of 29 and have the smallest thermal expansion coefficient mismatch to TiN electrodes. Therefore we conclude that Hf-Y-O films are candidates for application in next generations of microelectronic MIM-capacitor devices or metal gate transistor technology.  相似文献   

16.
Indium tin oxide (ITO) thin films were prepared by RF sputtering of ceramic ITO target in pure argon atmosphere at a high base pressure of 3×10−4 mbar without substrate heating and oxygen admittance. The use of pure argon during deposition resulted in films with high transparency (80-85%) in the visible and IR wavelength region. The films were subsequently annealed in air in the temperature range 100-400 °C. The annealed films show decreased transmittance in the IR region and decreased resistivity. The films were characterized by electron microscopy, spectrophotometry and XRD. The predominant orientation of the films is (2 2 2) instead of (4 0 0). The transmission and reflection spectra in the wavelength range 300-2500 nm are used to study the optical behaviour of the films. The optical transmittance and reflectance spectra of the films were simultaneously simulated with different dielectric function models. The best fit of the spectrophotometric data was obtained using the frequency-dependent damping constant in the Drude model coupled with the Bruggeman effective medium theory for the surface roughness. It has been found that the sputtering power and the chamber residual pressure play a key role in the resulting optical properties. This paper presents the refractive index profile, the structure determined from the XRD and the electrical properties of ITO films. It has been found from the electrical measurement that films sputtered at 200 W power and subsequently annealed at 400 °C have a sheet resistance of 80 Ω/□ and resistivity of 1.9×10−3 Ωcm.  相似文献   

17.
Silicon nitride and silicon oxynitride films grown on silicon substrates by plasma-enhanced chemical vapour deposition (PECVD) are stressed and the correlation of the film stress to its refractive index is presented. It is shown that it is possible to determine the stress of the PECVD nitride films by measuring their refractive indices, which can be done locally, but that the method is not applicable to the PECVD oxynitride films.  相似文献   

18.
The variation of the optical characteristics of thin films of oxidized porous silicon as a function of the preparation regime and subsequent heat treatment is investigated by ellipsometry. It is shown that the refractive index, optical thickness, and extinction coefficient of porous silicon films decrease monotonically, but the film thickness increases as the degree of oxidation of the silicon base layer increases. An analysis of the film thickness as a function of the degree of oxidation shows that it differs very little from the same dependence for the nonporous film. The composition of the films is determined from the measured refractive index at a wavelength λ=632.8 nm by means of curves calculated on the basis of the three-component Bruggeman model of the effective medium for layers with different initial porosities. Fiz. Tekh. Poluprovodn. 33, 1264–1270 (October 1999)  相似文献   

19.
真空退火对低频PECVD氮化硅薄膜性能的影响   总被引:1,自引:1,他引:0  
研究了真空退火温度对不同流量比工艺参数下PECVD氮化硅薄膜性能的影响,测试了退火后氮化硅薄膜厚度、折射率以及在氢氟酸中的腐蚀速率。结果表明,退火后氮化硅薄膜厚度及折射率变化与薄膜沉积工艺条件有关,而薄膜在氢氟酸中的腐蚀速率在退火后大大降低。结合退火前后氮化硅薄膜的红外透射谱对以上测试结果进行了讨论。  相似文献   

20.
采用等离子体增强化学气相沉积法(PECVD),在单晶硅衬底(100)上成功制备了不同生长工艺条件下的氮化硅薄膜。分别采用XP-2台阶仪、椭圆偏振仪等手段测试了薄膜的厚度、折射率、生长速率等参数。并采用原子力显微镜(AFM)研究了薄膜的表面形貌。结果表明,温度和射频功率是影响薄膜生长速率的主要因素,生长速率变化幅度可以达到230nm/min甚至更高。对于薄膜折射率和成分影响最大的是NH3流量,折射率变化范围可以达到2.7~1.86。分析得出受工艺参数调控的薄膜生长速率对薄膜的性质有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号