首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
热力学分析表明,Fe Ti B C熔体具有反应生成TiB2和TiC的可能性,TiB2和TiC热力学稳定性相当。试验结果表明,利用Fe Ti B C熔体反应可以制备TiB2和TiC颗粒增强铁基复合材料,TiB2颗粒和TiC颗粒均匀分布于α Fe晶粒中,TiB2颗粒比TiC颗粒具有更大的平均尺寸。  相似文献   

2.
以Ti、B4C、Ni、Al粉末为原料,通过自蔓延高温反应合成工艺(SHS)制备TiC-TiB2-NiAl复合材料,研究NiAl含量对反应产物的物相组成及组织结构的影响。结果表明:Ti+B4C+Ni+Al粉末SHS反应产物的物相组成为TiB2、TiC和NiAl,随着Ni+Al添加量的增多,NiAl相的衍射峰强度逐渐增强;TiB2、TiC和NiAl在基体中呈现不同的形态,其中TiB2呈六边形或长条状,TiC呈圆形,NiAl填充在TiC和TiB2颗粒之间;随着NiAl含量的增加,TiC-TiB2-NiAl复合材料的晶粒逐渐被细化,致密度和抗压强度均被提高,TiC的形态由不规则形状转变为圆形。复合材料的断裂方式由单纯的沿晶断裂转变为混合的沿晶断裂和穿晶断裂。  相似文献   

3.
采用机械合金化的方法利用工业纯Ti粉和B4C粉末合成了TiB2/TiC 纳米复合粉末。结果表明,球磨过程中保护气氛的纯度对合金化过程有着非常重要的影响。在纯氩气保护的情况下球磨5 h,Ti和B4C粉末发生了固相反应,形成了复合TiB2/TiC相,随着球磨时间增加,合成的TiC相的晶粒尺寸减小至10 nm,而TiB2晶粒尺寸略大;如果球磨过程中混入空气,合金化产物中将会出现大量的TiN和TiO  相似文献   

4.
采用放电等离子烧结(SPS),通过Ti与B4C之间的原位反应合成TiC+TiB/Ti复合材料。首先通过热力学计算判断可能发生的反应,利用x射线衍射(XRD)、扫描电镜(SEM)对球磨混合粉以及烧结后材料的相组成和显微组织进行了研究,测定材料的相对密度和硬度,并探讨了Ti与B4C采用放电等离子烧结制备TiC+TiB/Ti复合材料的致密化过程和反应机理。结果表明,采用SPS技术,在1150℃保温5min的条件下,Ti与B4C能同步完成反应、烧结、致密化,生成TiC+TiB/Ti复合材料,并且原位生成的增强相分布均匀且细小。  相似文献   

5.
TC4合金表面激光熔覆B4C及B4C+Ti粉末涂层的微观组织   总被引:3,自引:0,他引:3  
利用XRD,SEM和EDS分析手段对B4C和B4C+10%Ti(质量分数,下同)激光熔覆层的微观组织进行了分析。结果表明,TC4合金表面B4C与B4C+10%Ti激光熔覆层的组成相基本相同,均由TiC1-x,TiB,TiB2和Ti相组成,说明在TC4合金表面熔覆过程中有一部分Ti进入熔覆层并与B4C发生化学反应原位生成了TiB,TiB2和TiC1-x相。TiC1-x相以树枝状相形式存在,TiB2相以粗大须状相形式存在,TiB相以细小须状相形式存在。熔覆层与基底结合良好,没有发现裂纹与孔洞。基底热影响区呈淬火组织形貌,为典型的针状马氏体组织特征。与B4C激光熔覆层相比,B4C+10%Ti激光熔覆层的组织细小,TiB相含量增多,TiB2相含量减少。  相似文献   

6.
在XRD、SEM、能谱分析、TEM、TG-DSC等实验分析的基础上,对以TiO2、B2O3、C为原料,通过碳热还原法合成TiB2粉末的反应传质机理进行了研究,阐明碳热还原法合成TiB2的反应传质机理,建立碳热还原法合成TiB2的反应传质模型。研究表明:在碳热还原TiO2的过程中,由低温到高温,最稳定的还原产物分别是Ti4O7和Ti3O5,尤其当温度超过1300℃以后,Ti3O5为最稳定的还原产物。在碳热还原TiO2与B2O3合成TiB2的反应过程中,DDSC曲线上有几个明显的吸热峰,这分别对应于TiO2→Ti4O7→Ti3O5→TiB2的反应阶段。碳与氧化物颗粒之间是通过CO/CO2气体偶实现质量传递的。在反应体系中,B2O2(g)气相、Ti3O5(s)固相分别是形成TiB2的前驱体。  相似文献   

7.
通过原位生成反应,采用Cu-3.4%Ti和Cu-0.7%B中间合金,利用快速凝固技术制备纳米TiB,颗粒增强块体Cu—Ti合金,然后对合金在900℃进行热处理l~10h。高分辨透射电镜(HRTEM)观察表明,在铜熔体中,Ti和B通过原位反应生成初始纳米TiB2颗粒和TiB晶须,TiB晶须的生成会导致TiB2颗粒粗化。初始TiB2颗粒沿晶界分布,会阻碍晶粒在高温下的生长。在对合金进行热处理时,晶粒内的Ti和B原子通过扩散反应生成二次TiB2颗粒。对合金热处理前后的导电率和硬度进行测试。结果显示,生成的二次TiB2颗粒能够延缓合金在高温下硬度的下降,合金的电导率和硬度随着热处理时间的延长而增加,在处理8h时分别为33.5%IACS和HVl58。  相似文献   

8.
采用放电等离子烧结工艺,以Ti,Al,B4C,TiC为原料制备Ti3AlC2/TiB2复合材料。通过X射线衍射分析了从600℃到1300℃Ti3AlC2/TiB2系统反应过程的相形成规律。用扫描电镜观察了不同温度下试样的显微组织演变。结果表明,在900℃之前,主要的反应是Ti和Al反应生成Ti—Al金属间化合物,900℃之后,Ti—Al金属间化合物与TiC逐渐生成Ti3AlC2和TiB2相,形成致密Ti3AlC2/TiB2复合材料。  相似文献   

9.
研究了TiB2、TiC、Ti三种添加剂对超细B4C粉末的无压烧结(2200℃×1h)密度的影响。结果表明,加入Ti粉末对B4C的烧结没有产生明显的影响,最高密度不超过86%理论密度;而TiB2对B4C的烧结致密化有明显的促进作用,当TiB2含量达到50%时,复合陶瓷的烧结密度达到92%理论密度;TiC对B4C的烧结致密化影响比较复杂,过少或过多时均不能获得最高的烧结密度,当TiC含量为30%时,密度达到最高值(94.5%理论密度)。B4C-TiC反应烧结陶瓷由B4C、TiB2、C三相组成。  相似文献   

10.
碳化硼-硼化钛复合陶瓷的制备   总被引:2,自引:1,他引:2  
研究了TiB2、TiC、Ti三种添加剂对超细B4C粉末的无压烧结(2 200℃×1 h)密度的影响.结果表明,加入Ti粉末对B4C的烧结没有产生明显的影响,最高密度不超过86%理论密度;而TiB2对B4C的烧结致密化有明显的促进作用,当TiB2含量达到50%时,复合陶瓷的烧结密度达到92%理论密度;TiC对B4C的烧结致密化影响比较复杂,过少或过多时均不能获得最高的烧结密度,当TiC含量为30%时,密度达到最高值(94.5%理论密度).B4C-TiC反应烧结陶瓷由B4C、TiB2、C三相组成.  相似文献   

11.
利用粉末冶金技术,在真空状态下使Fe-Ti-C体系进行碳化反应原位合成TiC/Fe基复合材料,用扫描电镜(SEM)、X射线衍射(XRD)对所制备的试样进行组织结构分析,并用热分析法对Fe-Ti-C体系原位合成的反应机理进行研究。结果表明,反应合成的复合材料相组成为TiC和α-Fe,所合成的硬质相TiC颗粒细小,在铁基体中均匀分布。三元体系Fe-Ti-C的反应机理为:首先在765.6℃发生Fe的同素异构转变,即α-Fe→γ-Fe;其次在1078.4℃因Ti与Fe共熔而形成低共熔体Fe2Ti;最后在1138.2℃,C与Fe2Ti反应生成TiC。  相似文献   

12.
激光原位合成TiB2-TiC颗粒增强铁基涂层   总被引:2,自引:0,他引:2       下载免费PDF全文
采用B4C,TiO2,石墨以及铁基粉末为激光熔覆材料,利用激光多道搭接熔覆技术在碳钢基体上制备TiB2-TiC颗粒增强铁基复合涂层.利用XRD,SEM对涂层的相结构和显微组织进行了研究.采用显微硬度计和滑动磨损试验机分别测试了涂层的硬度和耐磨性能.结果表明,激光熔覆过程B4C,TiO2和石墨反应生成了TiB2和TiC颗粒,并均匀分布在基体中.随着激光功率密度增加,涂层中TiC含量减少,甚至出现FeB脆性相.TiB2-TiC颗粒增强的涂层其硬度和耐磨性能优于基材45钢.  相似文献   

13.
原位自生TiC-TiB2增强Fe基复合涂层的凝固特性及形成机理   总被引:3,自引:2,他引:1  
以Ti、B4C和Fe粉为原料,利用氩弧熔敷技术在Q235钢基体表面制备出原位自生TiC-TiB2增强Fe基复合涂层.利用扫描电镜(SEM)、X射线衍射仪(XRD)对涂层的显微组织进行了分析.并分析了TiC和TiB2颗粒的形成机理和氩弧熔池的凝固特性.实验结果表明:熔敷层组织为TiC和TiB2弥散分布在α-Fe中,熔敷层与基体呈冶金结合,无裂纹、气孔等缺陷;涂层中TiC和TiB2的体积分数约为68%.形成机理主要是以固态扩散机制为主,TiC以小颗粒状和花瓣状先析出,后析出的TiB2多以六边形、短棒状存在,TiB2的组织比较粗大,TiC颗粒比较细小,TiB2的含量大于TiC含量.  相似文献   

14.
利用海绵钛与B4C粉末之间的自蔓延高温合成反应,经普通熔铸工艺制备了TiB晶须和TiC粒子增强的钛基复合材料.研究了不同TiC、TiB含量对颗粒增强钛基复合材料组织和性能的影响.  相似文献   

15.
TiC–TiB2 /Cu composites were prepared by self-propagating high-temperature synthesis with pseudo hot isostatic pressing using Ti, B4 C, and Cu powders. The compressive deformation of the composites at high temperature was investigated. It is found that the maximum compressive strength decreases with the increase of temperature and Cu content. The deformation of the composites includes the steps of elastic, stable rheology, and inaction. The maximum strain is in the range of 5 %–10 %. Before fracture, TiC–TiB2 /40Cu becomes drum-shaped at 1123 K; however, TiC–TiB2 /20Cu only has a brittle fracture along the axial direction of 45°. The results show that the compressive strength of TiC–TiB2 /Cu decreases from 823 to 1223 K. However, the maximum compressive strength of TiC–TiB2 /20Cu reaches 1850 MPa at 823 K, which predicts that this series of composites could be applied to high-temperature compressive materials.  相似文献   

16.
采用B4C、TiO2、Al以及Fe基自熔合金粉末为前驱体,利用激光熔覆技术在钢基体上制备TiB2+TiC颗粒增强Fe基复合涂层。结果表明,激光熔覆过程通过B4C-TiO2-Al反应生成了均匀分布于基体的TiB2-TiC复合陶瓷相。TiB2颗粒呈长条块状,TiC以不规则形状分布于基体中。涂层具有比基材1045钢更好的耐磨性能,但涂层的摩擦因数小。  相似文献   

17.
Ti-B4C-C系在火焰喷涂时的SHS过程   总被引:1,自引:0,他引:1  
以Ti—B4C—C为反应喷涂体系,依托SHS反应火焰喷涂制备TiC—TiB2复相陶瓷涂层技术,通过水淬熄实验,截取了喷涂过程中飞行不同距离的粒子,观测了不同飞行距离下,中间状态反应产物的宏观特征、成分和组织结构及其变化过程,理论探讨了复合粉体在氧.乙炔火焰焰流中的飞行燃烧过程与反应机理。研究表明,中间状态的反应产物按其宏观特征出现了完全熔融的实心陶瓷液滴、完全熔融的空心陶瓷液滴、表面熔融芯部未熔的陶瓷颗粒和完全未熔的陶瓷颗粒4种。其飞行燃烧过程机理是:SHS反应始于钛粉的熔化,对位于火焰焰流芯部的中小尺寸喷涂团聚颗粒,其燃烧合成受扩散和毛细管机制控制,以爆燃方式进行;对位于火焰焰流外围的较大尺寸喷涂团聚颗粒,其燃烧合成受组元熔解析出机制控制。  相似文献   

18.
通过对体系进行机械合金化,随后将其与Cu粉进行混合和热压烧结制备了(TiC+TiB_2)/Cu复合材料。研究表明,机械合金化促使B_4C粉末分解并向Ti粉末中的固溶形成Ti-C-B的三元混合体系,有效降低了体系的反应温度,并在随后的热压烧结中生成(TiC+TiB_2),其原因是在Ti-C-B体系中生成TiB_2相比TiB具有更低的吉布斯自由能变。当增强相含量较低时,强化相颗粒细小弥散地分布在铜基体中,且与基体界面结合良好,可显著提高复合材料的硬度;但随着含量的增加,强化相的团聚现象加剧,与基体的界面结合方式也转变为简单的机械包裹,其强化效应并不能得以体现。此外,由于机械合金化提高了体系反应的活性,有效地避免了Ti向铜基体中的固溶,当增强相的设计含量为15vol%时所制备的(TiC+TiB_2)/Cu复合材料与直接混合Cu-Ti-B_4C粉末制备的复合材料相比导电率大幅提升。  相似文献   

19.
采用机械合金化制备不含和含2%(体积分数)B4C的钛基非晶合金粉末,随后采用放电等离子烧结-非晶晶化法合成不含/含(TiB+TiC)的Ti7oNb7.8Cu8.4Ni7.2Al6.6超细晶/细晶钛基复合材料;运用X射线衍射分析(XRD)、差示扫描量热分析(DSC)、扫描电子显微镜(SEM)和万能材料试验机等对制备的钛基非晶粉末和超细晶/细晶钛基复合材料进行表征.结果表明高能球磨80h的钛基粉末中主要为非晶相,B4C颗粒的加入对钛基粉末的玻璃转变温度、晶化温度和晶化焓有显著的影响.另外,不含/含(TiB+TiC)的复合材料的显微硬度分别为5.47和5.33GPa;以50K/min升温到1223K并保温10min获得的Ti70Nb7.8Cu8.4Ni7.2Al6.6块体试样的断裂强度和断裂应变分别为2098MPa和11.5%.  相似文献   

20.
Ti6Al4V表面激光熔覆NiCrBSi+B4C涂层的组织结构   总被引:5,自引:0,他引:5       下载免费PDF全文
选用NiCrBSi及2%民C混粉在Ti6Al4V合金表面进行激光熔覆处理,使基体中的Ti和B4C发生化学反应原位生成TiC、TiB2硬质增强相,制备出TiC与TiB2等增强相增强钛基复合材料涂层。综合运用XRD、SEM、EPMA和TEM等分析手段研究了优化熔覆工艺条件下的NiCrBSi+B4C激光熔覆层的组织结构与相组成,并对复合涂层进行了硬度测试,结果表明:NiCrBSi+2%B4C熔覆层的微观组织是在γ—Ni和Ni3Ti+Ni3B共晶的基体上均匀分布着TiB2、TiC、CrB等相的多元组织,激光熔覆层的硬度比Ti6Al4V基体硬度提高到3~4倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号