首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
采用硬质合金刀具,通过一系列的单因素直角切削试验对铝合金7050-T7451微切削加工中的切屑形貌、切削力以及尺度效应等进行了研究。为了便于使用Kistler9257B型测力仪进行加工过程切削力的测量,对工件进行处理,使用数控铣削中心实现直角车削。试验方案在不同切削速度下变换切削深度,考虑刀具刃口半径的存在对微切削加工过程的影响。试验中收集不同切削参数下的切屑,得到切屑的宏观形貌;对切屑进行抛光腐蚀,在高倍光学显微镜下获取切屑的微观形貌,研究了切削参数对切屑厚度和卷曲程度等的影响规律。试验过程中实时测得不同切削条件下的切削力,讨论了微切削加工过程切向力和径向抗力受刀具刃口半径影响下的变化规律,并从单位切削力的角度出发研究了刀具刃口半径对微切削加工过程中尺度效应的影响规律。  相似文献   

2.
使用未涂层的和AlCrSiN涂层的硬质合金车刀片以3种切削速度干式车削Ti-6Al-4V钛合金。研究发现AlCrSiN涂层刀片的切削寿命在各切削速度下都超过无涂层刀片, 而切削力、切削温度和工件表面粗糙度3项指标均低于无涂层刀具, 说明AlCrSiN涂层能够有效地保护基体从而维持刀具的锋利度。2种刀具在切削过程中均出现切削力先上升后下降的现象, 这与二者高温下产生的润滑氧化物有关。切削温度和工件粗糙度都与后刀面磨损量有正相关关系, 即随着后刀面磨损量的增加, 温度和粗糙度都随之增加, 但温度的增加还与前刀面第一变形区塑性变形增大, 热量增加有关。另外, 2种刀具产生的切屑尺寸、颜色、锯齿频率也证明了AlCrSiN涂层刀具磨损较慢,切削温度较低。  相似文献   

3.
切削速度对精车AISIH13淬硬钢切削行为的影响   总被引:1,自引:0,他引:1  
为了探究淬硬钢的切削加工性能,采用YW2A细晶硬质合金刀具精车淬硬AISIH13钢,光学照相仪、测力仪(YDC-Ⅲ89B)、工具显微镜(XGJ-1) 、扫描电镜(JSM5800LV)及便携式粗糙度仪(TR100)用于试验检测,分析了切削速度对切屑形成、切削力、刀具磨损及零件表面粗糙度的影响规律。结果表明,随着切削速度增大,切屑由连续性带状向C型节段演变,切削力、刀具后刀面磨损及工件表面粗糙度值均呈减小趋势;在试验切削速度范围内,前刀面以粘结磨损和氧化、扩散磨损为主,切削温度是主因,而后刀面以疲劳剥落为主,机械应力起主导影响。  相似文献   

4.
基于大变形有限元理论和更新的拉格朗日方程式,建立热机械耦合的平面应变正交切削模型,并利用通用的商业有限元软件,对6061铝合金的超精密切削过程进行有限元仿真.分析金刚石刀具前角对切削力、切屑变形、切屑根部最大应变、作用于前刀面最大压应力和切削温度分布的影响.结果表明:随前角由负向正变化,切屑厚度变小而长度变长、切屑的曲率半径随着变小,切削力和切屑一刀具接触面上最大压应力则随之下降,刀尖附近的切削温度逐步上升,但切屑根部的最大应变则保持不变.以此优选金刚石刀具前角.  相似文献   

5.
金属切削过程中,材料的去除是以切屑的形式完成的.切屑的形状受切削条件,如:切削速度、切削深度、进给量、工件材料以及刀具结构等因素的影响,而切屑形状又是影响工件加工效率的重要因素之一.首先将金属切削过程中产生的切屑分为理想型切屑和非理想型切屑;通过河流冲刷理论,假设切屑流摩擦刀片前刀面形成月牙洼的设想,提出理想断屑槽设计方法;通过切削实验,绘制断屑槽断屑特性曲线,从而揭示切削条件对切屑折断的作用规律,并进一步分析断屑槽的各种断屑机理.研究数据可为硬质合金可转位刀片的设计提供借鉴.  相似文献   

6.
航空铝合金高速铣削加工的三维数值模拟   总被引:1,自引:0,他引:1  
针对当前高速切削加工中模拟直角和斜角的有限元模型将变厚度切削层、螺旋形刀刃分别简化为等厚度切削层和直线形刀刃的不足,采用更接近实际的三维螺旋齿铣刀模型和变厚度切削层模型,对航空铝合金7050 T7451进行了高速铣削加工数值模拟,得到了铣削过程的切削力、切削温度及切屑形状.通过高速铣削实验测得了切削力,在相同的切削条件下模拟结果与实验结果比较吻合,切削温度及切屑形状也与实际相符.研究表明,三维螺旋齿铣刀模型和变厚度切削层模型可以准确模拟高速铣削加工过程,能够进一步用于研究切削参数与切削力、切削热之间的关系,进行切削参数及刀具寿命优化.  相似文献   

7.
为解决单晶锗微结构元件超精密金刚石切削加工的技术难题,提出采用超声振动辅助切削技术提高单晶锗的临界未变形切屑厚度,并推导了微结构切削中切屑厚度的理论计算公式. 进行微圆弧金刚石刀具的振动辅助微切削实验,研究临界未变形切屑厚度随振幅的变化规律,分析微槽表面加工质量和切屑形貌等. 分析4.5 μm和10.0 μm深的十字槽、矩形凸台等微结构的加工质量,针对微槽边缘的加工损伤问题,采用“切深递减”同时结合横向进给的工艺方法. 实验结果表明:微槽切削中切削深度的理论计算值存在较大的误差,应选用直接测量法;振动辅助切削的临界未变形切屑厚度随着振幅的增加而增大,最高达到了704 nm,是普通切削深度的5.2倍. 与普通切削相比,振动辅助加工可以在一定程度上降低微槽表面粗糙度. 采用振动辅助微切削技术能够在大切深条件下加工出具有较高表面质量和轮廓精度的微结构,能够有效解决微槽侧面加工损伤问题,微槽表面粗糙度Ra值低至3.09 nm.  相似文献   

8.
借助于切屑形成过程的动态观察研究,分析了金刚石刀具切削非晶态聚合物时的切屑形成形式和相应的切削力比值变化规律。在此基础上提出了相应的已加工表面形成模型,并用SMM对已加工表面形貌进行了微观观察和表面平面特征分析,拟阐明金刚石刀具削非晶态聚合物的已加工表面形成。  相似文献   

9.
借助于切屑形成过程的动态观察研究,分析了金钢石刀具切削非晶态聚合物时的切屑形成形式和相应的切削力比值变化规律。在此基础上提出了相应的已加工表面形成模型,并用SMM(ScanningMechanicalMicroscope)对已加工表面形貌进行了微观观察和表面平面特征分析,拟阐明金钢石刀具切削非晶态聚合物的已加工表面形成机理。  相似文献   

10.
微织构球头铣刀加工钛合金的有限元仿真   总被引:1,自引:0,他引:1  
为了研究微织构对球头铣刀切削性能的影响与表面微织构的抗磨减摩性能,通过分析微织构的设计理论,对微织构刀具和普通刀具切削钛合金TC4进行了三维动态切削仿真,对比分析了两种刀具在切削过程中切削力、切削温度及刀具磨损的变化.结果表明,在干式切削条件下,微织构刀具在切削过程中切削力降低了16%,切削温度降低了13%,磨损深度值是普通刀具的25%,但刀具变形变大.微织构在球头铣刀切削过程中能够减小切削力,降低切削温度,减小刀具前刀面的磨损,延长刀具寿命,但可能会影响加工精度.  相似文献   

11.
利用有限元分析软件ABAQUS研究微织构PCBN刀具车削Cr12MoV的过程,采用田口法进行正交试验设计,通过信噪比分析方法研究刀?屑实际接触面积、切削力和切削温度随织构参数的变化规律,并获得织构参数的最优组合。结果表明,刀?屑实际接触面积分别随织构槽宽和织构刃边距的增大而减小,织构槽宽和织构刃边距对刀具的切削性能影响最显著;与无织构刀具对比,选取最优织构参数组合的微织构PCBN刀具可使切削力降低5.2%,切削温度降低4.7%。  相似文献   

12.
高效切削钛合金时刀具磨损试验分析   总被引:2,自引:0,他引:2  
针对航空发动机典型零件钛合金膜盘在加工过程中刀具磨损严重、加工效率低的问题,采用未涂层硬质合金刀具进行钛合金外圆车削加工试验研究,利用CCD观测系统和SEM的能谱分析(EDX)研究刀具刃口微观结构变化,分析刀具的磨损形态及不同切削条件和锯齿屑对刀具磨损的影响. 结果表明:钛合金外圆车削加工时,刀具磨损主要为粘结磨损、扩散磨损和氧化磨损,切削速度对刀具磨损影响较大,进给量次之,背吃刀量最小. 随着切削速度和进给量的增加,磨损加剧,锯齿屑的高频形成导致切削力的高频变化,这种高频率的冲击载荷在前刀面上产生应力和温度冲击,使刀具形成微裂纹,加速刀具磨损;使用冷却液可以减轻刀具后刀面粘结磨损和扩散磨损,从而可有效地控制刀具磨损.  相似文献   

13.
石墨电极接头作为一种新型高性能低成本冶炼金属的石墨材料,具有广泛的应用前景。然而,石墨电极接头在生产加工中却存在着很多问题,难以厘清。为了探明石墨电极接头锥面的加工性能,本文进行石墨电极接头锥面正交车削实验。实验选取不同刀具角度的硬质合金刀具进行不同车削参数实验,并进行分析。结果表明:加工石墨电极接头锥面时,切削力呈现波动状态,并且切削力大小随走刀速度 和切削厚度 的增大而增大,随切削速度 、刀具前角 和后角 增大而减小。此外,由于石墨电极接头是脆性材料, 增大时刀具并不会产生积削瘤。基于最小切削力和表面粗糙度目标,本文得到的最佳切削参数及刀具角度为 =0.5mm、 =160mm/min、 =100mm/min、 =12°、 =16°。本文得出的最优工艺参数及相关结论可为企业在生产实践中提供理论参考。  相似文献   

14.
Binderless nanotwinned cubic boron nitride (nt-cBN) synthesized from onion-structured BN precursors under high pressure and high temperature shows a very fine microstructure consisting of densely lamellar nanotwins (average thickness of 4 nm) within nanograins. The unique nanotwinned microstructure offers high hardness, wear resistance, fracture toughness, and thermal stability which are essential for advanced cBN tool materials. Thus, a circular micro tool of nt-cBN was fabricated using femtosecond laser contour machining followed by focused ion beam precision milling. Thereafter turning tests were performed on hardened steel using the studied micro tool. To evaluate the cutting performance, the machined surface quality and subsurface damage of the hardened steel were characterized. The wear mechanism of the nt-cBN micro tool was also investigated. It is found that the fabricated nt-cBN micro tool can generate high quality surface with surface roughness less than 7 nm and nanograin subsurface of about 500 nm deep. In addition, abrasive wear is found to be the dominant wear mechanism of the nt-cBN micro tool in turning hardened steel. These results indicate that nt-cBN has outstanding potential for ultra-precision cutting hardened steel.  相似文献   

15.
金刚石车削表面微观形貌形成机理的研究   总被引:4,自引:0,他引:4  
为了在超精密加工前预测并控制表面粗糙度,提出一种建立圆弧刃车刀金刚石车削表面微观形貌的几何模型的新方法,开发并编写了表面微观形貌的仿真程序,在程序中考虑了刀具几何参数、振动和最小切削厚度对已加工表面特性的影响,通过理论分析和试验研究确定了最小切削厚度与切削刃钝圆半径之间的关系,分析了影响已加工表面粗糙度的若干因素,并在仿真生成的表面微观形貌中成功地加入了随机振动信号,大量切削试验是在自行研制的亚微米CNC超精密机床上进行的,结果表明:利用所建立的表面微观形貌几何模型,能够预测金刚石车削加工将要获得的表面粗糙度。  相似文献   

16.
Diamondturningprocessischaracterizedbyhigh dimensionalaccuracyandgoodsurfaceintegrityandhasbeenappliedinmanyadvancedindustrialfields,such ascomputer,automobile,opticsmanufacturing,etc.Usingthistechnology,thesoftmetal,suchasalumi numorcopperoritsalloys,can…  相似文献   

17.
根据最小表面磨损率理论,使用涂层硬质合金刀具对铁基高温合金GH2132进行了干式车削试验。采用单因素法优选切削参数,建立了最小表面磨损率条件下切削力、切削温度及表面粗糙度与切削用量之间的关系,借助电子扫描显微镜(SEM)对试验中产生的加工现象和刀具磨损机理进行了阐述。试验结果表明:刀具在进给量f=0.1 mm/r,切削深度ap=0.1 mm,切削速度v=90 m/min条件下切削时,刀具磨损强度最低,消耗最少,切削路程最长,加工精度最高;刀具的磨损机理前期以涂层剥落为主,后期主要表现为疲劳引起的切削刃崩刃。  相似文献   

18.
基于振动切削机理,对夹片车削中刀具——工件振动系统的动态变化进行了研究,提出降低切削力的方法,该方法提高了加工精度、并具有切削温度不高和消除积屑瘤的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号