首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
磺化聚酰亚胺是一类很有希望在燃料电池中获得应用的质子交换膜材料。本文对近年来六元环型磺化聚酰亚胺的制备、磺化聚酰亚胺质子交换膜的各项性能做了一定的归纳与分析。重点介绍了耐水性、耐久性、离子交换容量、质子电导率四个方面的测试方法及影响因素,指出目前存在的问题并预测了今后重点研究的方向。  相似文献   

2.
质子传导率超过Nafion膜的质子交换膜是近年来研究的焦点。质子交换膜的质子传导率与它们的IEC值和形态有关。形成离子通道是开发高质子传导率的质子交换膜的一种有效方法。形成离子通道主要有3种:1)用嵌段共聚物的微相分离;2)侧链和支链磺化的聚合物;3)局部区域的高密集磺化。此外,与无机纳米材料形成纳米复合材料的质子交换膜也能提高质子交换膜的质子传导率及质子交换膜的机械强度、尺寸稳定性、耐氧化稳定性等性能。综述了关于用于高质子传导率的燃料电池质子交换膜(PEM)的聚合物的研究进展。对高质子传导率的燃料电池膜聚合物的发展趋势进行了展望。  相似文献   

3.
介绍了质子交换膜的分类,综述了主链型聚砜质子交换膜、侧链型聚砜质子交换膜、无机掺杂复合型聚砜质子交换膜等聚砜类燃料电池质子交换膜的最新研究进展,全面阐述了磺化聚砜的形貌、结构对材料物理化学性能的影响,并展望了聚砜类燃料电池质子交换膜的发展前景。  相似文献   

4.
质子交换膜作为质子交换膜燃料电池的核心部件具有提供离子通道传递质子和隔绝两极气体的双重作用,其性能的好坏直接影响着电池性能的优劣。主链引入亲水和疏水段的嵌段芳香族共聚物,由于各嵌段之间具有热力学不相容性会产生微相分离结构,进而形成高效的质子传导通道。本文以磺化双(4-氟苯基)砜(SDFDPS)和4,4'-硫代双苯硫酚(TBBT)为单体,以间羟基苯胺为封端剂合成了带有氨端基的磺化聚芳硫醚砜(SPTES-NH2)。嵌段聚合物SPTES-b-PI通过亲水段SPTES-NH2与以1,4,5,8-萘四羧酸二酐(NDA)和4,4'-双(3-氨基苯氧基)二苯基砜(m-BAPS)为单体缩聚而成的疏水段聚酰亚胺(PI)的酰亚胺化偶联反应来合成,制备出了PI分子量不同的SPTES-b-PIxx=5~20kg/mol)。SPTES-b-PIx膜显示出优异的热力学稳定性,SPTES-b-PIx膜的脱磺化反应开始于290℃高于260℃的SPTES膜,与SPTES-70相比吸水率降低。随着聚酰亚胺分子量的增大,热稳定性增加,质子传导率增加。SPTES-b-PIx的质子传导率25℃下达到0.045~0.124S/cm。  相似文献   

5.
燃料电池用质子交换膜   总被引:1,自引:0,他引:1  
介绍了燃料电池用含氟质子交换膜的研究历程、应用、结构与性能的关系及当前针对性的改进,归纳了磺化碳氢聚合物、有机无机复合物、离子交联聚合物和无机固体酸等非氟质子交换膜的代表性研究,指出了各利非氟质子交换膜的优点和不足,对质子交换膜的发展做了相应的展望。  相似文献   

6.
为提高膜的尺寸稳定性和阻醇性能,以磺化聚苯并咪唑(S-PBI)与高磺化度聚醚砜(ABPS)两种聚合物为原料,采用溶液共混的方法,制备了系列酸碱复合质子交换膜。研究了复合膜的甲醇溶胀性、吸水率、甲醇渗透系数、质子传导率随S-PBI含量的变化规律。研究表明,随着S-PBI含量的增加,膜的阻醇性能和尺寸稳定性明显提高;同时,复合膜具有较好的质子传导率,有望应用于直接甲醇燃料电池。  相似文献   

7.
研究了以具有微相结构的嵌段共聚物氢化聚苯乙烯-丁二烯嵌段共聚物(SEBS)为基体制备质子交换膜,制备新型的无氟磺化嵌段聚合物质子交换膜——磺化氢化聚苯乙烯-丁二烯三嵌段共聚物(SSEBS)膜。对制备工艺进行研究和优化,采用热重分析(TGA)、傅里叶转换红外光谱(FTIR)和原子力显微镜(AFM)等手段对产物结构进行了表征,对微相结构和性能之间的关系进行分析讨论。SEBS经磺化后其微相分离形态仍存在,随着磺化度的提高,SSEBS膜的含水率提高,质子通道易于形成使得质子传导率提高,但同时膜的溶胀程度增加导致起物理交联作用的微相结构变得松散,使得力学性能下降。  相似文献   

8.
王文娟  陈新兵 《精细化工》2014,31(6):686-689,694
以有序介孔碳(CMK)为掺杂剂,在乙醇中超声分散后与磺化聚酰亚胺的间甲酚溶液直接混合,然后采用流延法制备掺杂质子交换膜。环镜扫描电子显微镜表征发现CMK在膜中分散均匀。通过吸水率、溶剂吸收率、尺寸变化、电导率、甲醇透过率、力学性能及稳定性等测试发现掺杂膜虽然电导率有所下降,但其吸水率下降了15%~26%;抗溶胀性提高了15%~30%;热稳定性提高了约20~30℃;抗氧化性增大了1.3~1.5倍;水稳定性和力学性能也显著提高。  相似文献   

9.
付凤艳  程敬泉 《广州化工》2020,48(8):14-15,23
保护环境,开发环保型能源,对人类和社会具有重要意义。质子交换膜燃料电池由于环境友好,近年来引起了电池领域研究者们的兴趣。质子交换膜是燃料电池的重要组成部分,磺化聚磷腈由于具有质子传导率高,稳定性能好,成本较低等优点可以作为质子交换膜的备选材料。本文主要综述了磺化聚磷腈类质子交换膜在燃料电池质子交换膜方面的研究进展,详细介绍了此类质子交换膜的制备和表征,同时对其应用前景做了评论和展望。  相似文献   

10.
简介了燃料电池的重要性及质子交换膜在燃料电池中的核心地位.简述了目前燃料电池用质子交换膜研究中,设计具有成本低、加工性好、燃料选择性好等优点的质子交换膜替代全氟磺酸膜的发展趋势,分析了聚乙烯基质子交换膜的优势,介绍了近年来聚乙烯基质子交换膜的制备方法和基本性能,指出可通过聚乙烯与磺化聚合物共混、设计合成磺化聚乙烯以及聚...  相似文献   

11.
Semi‐interpenetrating polymer network (semi‐IPN) membranes based on novel sulfonated polyimide (SPI) and poly (ethylene glycol) diacrylate (PEGDA) have been prepared for the fuel cell applications. SPI was synthesized from 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid, and 2‐bis [4‐(4‐aminophenoxy) phenyl] hexafluoropropane. PEGDA was polymerized in the presence of SPI to synthesize semi‐IPN membranes of different ionic contents. These membranes were characterized by determining, ion exchange capacity, water uptake, water stability, proton conductivity, and thermal stability. The proton conductivity of the membranes increased with increasing PEGDA content in the order of 10?1 S cm?1 at 90°C. These interpenetrating network membranes showed higher water stability than the pure acid polyimide membrane. This study shows that semi‐IPN SPI membranes based on PEGDA which gives hydrophilic group and structural stability can be available candidates comparable to Nafion® 117 over 70°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Fei Sun 《Polymer》2010,51(17):3887-2739
A novel side-chain-type sulfonated aromatic diamine, 5-[1,1-bis(4-aminophenyl)-2,2,2- trifluoroethyl]-2-(4-sulfophenoxy)benzenesulfonic acid (BABSA) was synthesized and characterized. Two series of sulfonated polymides (SPI-N and SPI-B) were prepared from 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) or 4,4′-binaphthyl-1,1′,8,8′-tetracarboxylic dianhydride (BNTDA), sulfonated diamine BABSA and various non-sulfonated aromatic diamines. The resulting sulfonated polyimide (SPI) membranes exhibited good dimensional stability with isotropic swelling of 7-22% and high thermal stability with desulfonation temperature of 283-330 °C. These membranes also displayed excellent oxidation stability and good water stability. The SPI membranes exhibited better permselectivity than Nafion 115 membrane due to their much lower methanol permeability. The ratios of proton conductivity to methanol permeability (Ф) for the SPI membranes were almost two to three times of that for Nafion 115. The SPI-N membranes exhibited excellent conducting performance with the proton conductivity higher than Nafion 115 as the temperature over 40 °C, which attributed to their good hydrophobic/hydrophilic microphase separation structure.  相似文献   

13.
A series of sulfonated copolyimides (SPIs) with hydrophilic segment length of 20–60 based on 4,4′‐sulfide‐bis(naphthalic anhydride) (SBNA) have been successfully synthesized to improve hydrolytic stability and proton conductivity. The SPI membranes were cast from their m‐cresol solutions, and they were characterized by determining the water uptake, water swelling ratio, mechanical properties, hydrolytic stability, oxidative stability, and proton conductivity. It was found that the water uptake of SPI membranes was low and decreased as the hydrophilic segment length increased, which led to good dimensional stability. In addition, the SPI membranes with low ion‐exchange capacity (IEC) value displayed excellent hydrolytic stability and retained good mechanical properties even after harsh hydrolysis testing, in which the block SPI with hydrophilic segment length of 40 had the best hydrolytic stability, while those with high IEC value showed an apparent decrease. All of the block SPI membranes show better conductivity than the random ones at the temperature range from 30 to 70°C. Interestingly, the proton conductivities of random SPI membranes were higher than that of corresponding block ones at 90°C. The block SPI with hydrophilic segment length of 40 gave the highest proton conductivity as the temperature increased among the block SPIs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41501.  相似文献   

14.
Kangcheng Chen 《Polymer》2009,50(2):510-4951
A novel sulfonated diamine bearing sulfophenyl pendant groups, namely, 4,4′-bis (4-aminophenoxy)-3,3′-bis(4-sulfophenyl) biphenyl and a series of sulfonated polyimides (SPIs) based on it were successfully synthesized. The SPIs had high viscosity and gave tough, flexible and transparent membranes. The SPI membranes showed anisotropic membrane swelling in water with 2.5-4 times larger swelling in thickness direction than in plane one. They displayed reasonably high proton conductivity. For example, the conductivities for the SPI with an ion exchange capacity of 1.80 mequiv/g were 104 and 7.3 mS/cm in water and 50% RH, respectively, at 60 °C. They maintained high mechanical strength and proton conductivity even after aging in water at 130 °C for 500 h, showing the high water stability comparable to the best SPI reported so far. In polymer electrolyte fuel cells (PEFCs) operated at 90 °C and 50% RH, they showed fairly high cell performances and have high potential for PEFC applications.  相似文献   

15.
Two types of membranes, the sulfonated PEEK-WC (poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxyphenylene)(SPWC) and Krytox-Si-Nafion® (KSiN) composite membranes are proposed for DMFC applications.The properties based on water uptake, ion exchange capacity, proton conductivity, gas permeability, thermal stabilityand methanol crossover are summarized. The comparative studies on SPWC and Nafion® 117 membranes clarify us that the amorphous sulfonated PEEK-WC polymer shows thermal and mechanical stability with less methanol flux and gas permeability. The membrane also exhibits the increase in water uptake, ion exchange capacity and proton conductivity as sulfuric acid doping agent concentration was increased. The KSiN is unique in term of its miscible hybrid structure of silica particles modified with Nafion® structured Krytox 157 FSL chain (KSi) andNafion®. Based on the KSiN membranes with different KSi content, it was found that when KSi content increased, the reduction of gas permeability, methanol crossover and thermal stability are improved. The composite membrane performs the proton conductivity in the wide range of high temperature (60–130°C).  相似文献   

16.
Haibing Wei 《Polymer》2011,52(13):2735-2739
In the pursuit of the hydrolytically stable sulfonated polyimide (SPI) membranes with high proton conductivity for fuel cell applications, a series of novel SPI ionomers derived from benzophenone-4,4′-bis(4-thio-1,8-naphthalic anhydride) (BPBTNA) were conveniently synthesized. The accelerated water stability tests demonstrated that the resultant SPI membranes kept highly the original mechanical properties even after 24 h in water at 140 °C. The membranes exhibited a microphase-separated structure with high morphological stability, and well-collected hydrophilic domains that could work as proton transport channels. The proton conductivity of 1c with an IEC of 1.90 meq g−1 was higher than that of Nafion at 100% relative humidity (RH).  相似文献   

17.
A series of six‐membered sulfonated polyimides with aliphatic linkages (SPIAs) was successfully synthesized using 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTDA), 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid (BDSA) as the sulfonated diamine, and aliphatic diamines H2N(CH2)nNH2 where n = 6, 8, 10, 12. These SPIAs were evaluated for thermal stability, ion exchange capacity (IEC), water uptake, proton conductivity, and hydrolytic stability. Proton conductivity and hydrolytic stability of the SPIAs were compared with the fully aromatic polyimide (MDA‐SPI) prepared from 4,4′‐methylenedianiline (MDA), BDSA, and NTDA. All the SPIAs exhibited high thermal stability. As the chain length of the aliphatic diamine decreased, the IEC and water uptake of the SPIAs increased. The SPIAs showed higher proton conductivity than commercially available membranes such as Nafion 117 at high temperatures and higher proton conductivity than MDA‐SPI at all temperatures. All SPIAs exhibited a hydrolytic stability more than twice as high as that of MDA‐SPI. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
Polyimides (PIs) as high‐performance organic matrices are used in the preparation of PI composites because of their excellent mechanical, thermal and dielectric properties. The sol–gel method is a promising technique for preparing these PI composites due to the mild reaction conditions and the process being controllable. Although sulfonated polyimide (SPI) proton‐exchange membranes have attracted much attention recently, studies on preparing SPI‐based hybrid proton‐exchange membranes for fuel cells have been rare. A series of SPI? SiO2 hybrid proton‐exchange membranes were prepared from amino‐terminated SPI pre‐polymers, 3‐glycidoxypropyltrimethoxysilane (KH‐560) and tetraethylorthosilicate through a co‐hydrolysis and condensation process using an in situ sol–gel method. The reactive silane KH‐560 was used to react with amino‐terminated SPI to form silane‐capped SPI in order to improve the compatibility between the polymer matrix and the inorganic SiO2 phase. The microstructure and mechanical, thermal and proton conduction properties were studied in detail. The hybrid membranes were highly uniform without phase separation up to 30 wt% SiO2. The storage modulus and tensile strength of the hybrid membranes increased with increasing SiO2 content. The introduction of SiO2 improved the methanol resistance while retaining good proton conductivity. The hybrid membrane with 30 wt% SiO2 exhibited a proton conductivity of 10.57 mS cm?1 at 80 °C and methanol permeability of 2.3 × 10?6 cm2 s?1 possibly because the crosslinking structure and SiO2 phases formed in the hybrids could retain water and were helpful to proton transport. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
采用共混制备了一系列磺化含酚酞侧基聚芳醚酮(SPEK-C)/氧化石墨烯(GO)复合质子交换膜,系统地研究了GO含量对复合膜性能的影响。结果表明,GO含量对膜的离子交换容量、稳定性、质子电导率和甲醇渗透率等有重要影响。复合膜质子电导率随GO含量增加而提高,GO含量为2%和5%的复合膜在80℃下质子电导率均在10-1 S·cm-1以上。80℃下,GO含量为5%的复合膜甲醇渗透率为6.69×10-7 cm2·s-1,低于同温度下复合前SPEK-C膜1个数量级。复合后膜的化学稳定性增强,离子交换容量和含水率均有提高,相对选择性明显增大,最高达SPEK-C的18.2倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号