首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Modification of low‐density polyethylene (LDPE) with vanillin to obtain flavored packaging film with improved gas barrier and flavor‐releasing properties has been studied. The modification of LDPE with vanillin was monitored by Fourier transform infrared spectroscopy, wherein the appearance of new peaks at 1704.7, 1673.6, and 1597.2 cm?1 indicates the incorporation of vanillin into LDPE matrix. Films of uniform thickness were obtained by the extrusion of modified LDPE. Modified LDPE was found to have significantly higher gas barrier properties and grease resistance. Sensory quality of food products viz, doodhpeda (milk‐based solid soft sweet), biscuit, and skimmed milk powder packed in LDPE‐vanillin film showed that the doodhpeda sample had clearly perceptible vanilla aroma, whereas biscuit had marginal aroma and skimmed milk powder did not have noticeable aroma. When viewed in the light of imparting desirable vanilla aroma, results of the study indicated that LDPE‐vanillin film has better prospects as a packaging material for solid sweets with considerable fat content when stored under ambient conditions. The release of vanilla aroma was further confirmed by gas chromatography–mass spectrometery analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Polymerized solid-type urushiol (YPUOH) with high thermal stability and excellent antimicrobial properties was prepared and incorporated into low-density polyethylene (LDPE) via melt-compounding and subsequent melt-extrusion processes. To investigate the feasibility of as-prepared LDPE/YPUOH composite films for use in packaging applications, the films were characterized as a function of YPUOH using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (WAXD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), contact angle, and antimicrobial activity assays. The physical properties and antimicrobial activities were found to be strongly dependent upon the changes in chemical and morphological structures originating from different compositions of the composite films. The thermal stability of the composite films was effectively improved with YPUOH addition. Incorporating YPUOH caused the water vapor transmission rate (WVTR) to decrease from 10.3 to 6.5 g/m2·day, suggesting that the barrier properties of LDPE, which are relatively good per se, were further improved. Furthermore, the LDPE/YPUOH composite films exhibited good antimicrobial activities against both Gram-negative and Gram-positive micro-organisms. However, the dispersion of YPUOH in the LDPE matrix was not satisfactory due to a weak interaction between LDPE and YPUOH, which may adversely affect the thermal and barrier properties at higher contents of YPUOH. Further studies are required to increase the compatibility and dispersion of YPUOH in the LDPE matrix in order to optimize its performance and expand its applications.  相似文献   

3.
Polypropylene (PP) composite films were successfully prepared using melt blending by directly mixing PP pellets with zeolite A or silver‐zeolite A powder and then blowing. All the prepared films were characterized in terms of their physical, mechanical, optical, and gas permeability properties. The structure of each composite film was similar to that of the pure PP film. The crystallinity and glossy quality of the composite films were increased by the addition of silver, zeolite, and maleic anhydride grafted PP (PP‐g ‐MA). The composite PP film with zeolite A and PP‐g ‐MA exhibited a level of oxygen and carbon dioxide permeation (6438 and 15,087 cc m?2 day?1 atm?1, respectively). Finally, all the films were evaluated for their antibacterial activity and fruit packaging applications. Silver‐zeolite A‐PP composite films exhibited a bactericidal activity of 79% against Staphylococcus aureus and 52% against Escherichia coli , while the zeolite A‐PP film could extend the shelf‐life of bananas for over a week. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45450.  相似文献   

4.
Dimethyl 2‐methacryloxyethylphosphonate, its monosodium salt, and methyl 2‐methacryloyloxyethylphosphonic acid were synthesized, characterized, and grafted onto low‐density polyethylene (LDPE) powder under melt‐processing conditions in a Rheocord batch mixer (Karlsruhe, Germany). We studied the graft copolymerization onto LDPE in the presence of free‐radical initiators, benzoyl peroxide, and dicumyl peroxide, and we performed grafting onto ozone‐pretreated LDPE without any free‐radical initiator. Effects of reaction time, initiator concentration, and reaction temperature were studied. The possibility of modifying LDPE in the molten state with phosphonated methacrylates was clearly demonstrated. Graft copolymers were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and water contact angles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2011–2020, 2002  相似文献   

5.
Potato starch was radiolytically degraded to different extents by irradiating with Co‐60 gamma radiation in wide dose range. The degraded starch was plasticized using glycerol and water to obtain radiation processed thermoplastic starch (RTPS). Blends of different RTPS and low density polyethylene (LDPE) were prepared by internal melt mixing. Characterization of blends using differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscope, melt flow, contact angle, and soil burial studies indicated changes in the blend morphology and biodegradation behavior with the increase in the dose imparted to the starch fraction. Molecular weight of starch decreased substantially in the dose range of the study. The melt viscosity of LDPE/RTPS blend decreased whereas crystallinity of LDPE phase increased with the incorporation of RTPS. No significant change in the carbonyl index and thermal stability of the blends was observed in the dose range studied; therefore, the observed changes in the physical and thermal properties of the blends were attributed primarily to the kinetic factors affecting crystallization and time‐dependent phase separation process. Biodegradability of blends varied with the radiation dose imparted to starch component of blend, suggesting better encapsulation of RTPS by LDPE chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A pectin and poly(lactic acid) (PLA) composite was compounded by extrusion. A model antimicrobial polypeptide, nisin, was loaded into the composite by diffusion. The incorporation of pectin into PLA resulted in a heterogeneous biphasic structure, as revealed by scanning electronic microscopy, confocal laser microscopy, and fracture–acoustic emission. The incorporation of pectin also created a rough and cragged surface, which was hydrophilic and facilitated the access and absorption of nisin. The nisin‐loaded composite suppressed Lactobacillus plantarum growth, as indicated by agar diffusion and liquid‐phase culture tests. The incorporation of pectin at the concentration of ~ 20% of the total mass did not alter the Young's modulus of the film from that of the pure PLA. The composite materials were able to retain their tensile strength, flexibility, and toughness to an extent that satisfied the requirements for packaging materials. Results from this research indicate the potential of pectin/PLA composites for applications in antimicrobial packaging. © 2007 Wiley Periodicals, Inc.? J Appl Polym Sci 2007  相似文献   

7.
In packaging applications, blocking is always found in low‐density polyethylene (LDPE) films. Practically, such problems can be solved by incorporation of antiblocking agents, for example, silica and talc. The objective of this research was to explore the possibility of using silica from rice husk ash (RHA silica) as an antiblocking agent in LDPE film. Properties of RHA silica were compared with commercial silica, Sylo‐1. The appropriate amount of silica to be used as an antiblocking agent in LDPE film was also investigated. The results indicate that RHA silica has a smaller particle size and a higher specific surface area but a higher bulk density than those of Sylo‐1 silica. In the plastic film industry, 500–1000 ppm of silica is added in LDPE films as an antiblocking agent. It was also found that LDPE film with 2000–3000 ppm RHA silica showed similar properties to LDPE film filled with commercial silica in terms of its blocking behavior, mechanical strength, and film clarity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 848–852, 2003  相似文献   

8.
Over the past decade there is an immense effort to develop antimicrobial packaging systems, which incorporates natural biopreservatives, such as essential oils (EOs). The highly volatile nature of EOs, which is advantageous for their efficient diffusion and mode of action, presents a major obstacle for their incorporation with polyolefins via conventional high‐temperature melt compounding and processing. This study presents a new approach to use organo‐modified montmorillonite (MMT) clays, as active carriers for carvacrol (used as a model EO), aiming to minimize its loss throughout the polymer compounding. Different MMT clays are pretreated with carvacrol, resulting in the oil molecules intercalation in between the clay galleries and enhanced carvacrol thermal stability. These hybrids are incorporated within low‐density polyethylene (LDPE) and the resulting films are characterized in terms of their nanostructure, thermal properties, and antimicrobial activity. The LDPE/(clay/carvacrol) nanocomposites exhibit excellent and prolonged antimicrobial activity against E. coli bacteria, while LDPE/carvacrol films loss their antimicrobial functions within several days. The superior antimicrobial behavior is ascribed to the significantly higher carvacrol content and its enhanced thermal stability within the films. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41261.  相似文献   

9.
A novel photodegradable and biodegradable polyethylene (PE) film was prepared through a melt blending technique, where nano‐TiO2 and common kaolin were used as the photocatalyst and biodegradable promoter showing improved degradable efficiency of the waste PE. The photo‐degradation of the composite film was investigated by weight loss monitoring, attenuated total reflection–fourier transformed infrared spectroscopy (ATR–FTIR), and scanning electron microscopy. The aerobic biodegradation of the residue films after photodegradation was investigated by analysis of evolved carbon dioxide of films in aquatic test systems according to the international standards (ISO 14852, 1999). The results showed that the weight loss of as‐prepared photo‐ and biodegradable composite film reached 26.8% after 240 h of UV light irradiation. The big cavities formed not only on the film surface but also inside the bulk film, together with the chalking phenomenon taking place. The biodegradation results revealed that the addition of kaolin enhanced the degradation of UV‐light treated TiO2‐PE films. The prepared PE based composite films showed promising application as novel photo‐biodegradable environment‐harmless materials. In addition, a degradation mechanism for this composite film was also discussed. POLYM. COMPOS., 37:2353–2359, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
Various (low‐density polyethylene)/poly(ethylene‐co‐vinyl acetate) (LDPE/EVA) nanocomposites containing organoclay were prepared by one‐ and two‐step procedures through melt blending. The resultant nanocomposites were then processed via the film blowing method. From the morphological point of view, X‐ray diffraction and optical microscopy studies revealed that although a prevalent intercalated morphology was evident in the absence of EVA, a remarkable increase of organoclay interlayer spacing occurred in the EVA‐containing systems. The advantages of the addition of EVA to the LDPE/organoclay nanocomposites were confirmed in terms of oxygen barrier properties. In other words, the oxygen transmission rates of the LDPE/EVA/organoclay systems were significantly lower than that of the LDPE/organoclay sample. The LDPE/EVA/organoclay films had better mechanical properties than their counterparts lacking the EVA, a result which could be attributed to the improvement of the organoclay reinforcement efficiency in the presence of EVA. Differential scanning calorimetry and thermogravimetric analysis experiments were performed to follow the effects of the EVA and/or organoclay on the thermal properties of LDPE. Finally, the films produced from the two‐step‐procedure compound showed enhanced oxygen barrier properties and mechanical behavior as compared to the properties of the films produced via the one‐step procedure. J. VINYL ADDIT. TECHNOL., 19:132–139, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
The composite double‐layered films, for the packaging application of postharvest fruits and vegetables, were prepared by laminating low‐density polyethylene (LDPE) and poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) modified with zeolite ZSM‐5. The film was characterized by scanning electron microscope and differential scanning calorimeter and tested for permeation of ethylene (C2H4), oxygen (O2), carbon dioxide (CO2), and water vapor. It was found that the C2H4 permeability of the films was improved because of an enhanced adsorption of C2H4 by the incorporated zeolite (0–10 wt%). The preconcentrated layer (zeolite/SEBS) leads to a higher C2H4 concentration gradient across the film. Moreover, the high dispersion of zeolite increased the C2H4 permeation. When compared with O2 and CO2, the composite films were more selective to C2H4. However, the C2H4 permeation decreased in the presence of O2 because of a competitive adsorption. In addition, the films possessed appreciate tensile properties for packaging application. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
Poly(tetrafluoroethylene) (PTFE) scraps were recovered as a filler material for low‐density polyethylene (LDPE) after they were degraded by Co‐60 γ‐rays under atmospheric conditions to make small‐size powder. The powder PTFE, which was called secondary PTFE (2°‐PTFE), was melt mixed with LDPE and then extruded to obtain 200 µm films. The mechanical and thermal properties and also the morphology of the fractured surface of these 2°‐PTFE–filled LDPE were studied. It was found that the addition of 2°‐PTFE resulted in thermofilm property of LDPE but it slightly decreased the thermal oxidative temperature of LDPE. The tensile strength and ultimate elongation of LDPE were found to decrease with the addition of 2°‐PTFE. However, when it is compared to the addition of virgin PTFE into LDPE, 2°‐PTFE shows better mechanical properties due to the presence of oxy groups which are capable of interacting with the main matrix. A further improvement in mechanical properties was achieved by silane coupling agent treatment of 2°‐PTFE. Silane coupling agents were found to enhance the interfacial adhesion between 2°‐PTFE and LDPE. The study on the fractured surfaces by scanning electron microscope revealed this adhesion between these two polymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 866–876, 1999  相似文献   

13.
Possibility of the polyimide (PI) films waste recycling by solid‐state mechanochemistry was investigated in this study. Obtained PI powder was used for development of thermostable blends and multicomponent tribocompositions, which include additions of carbon black, ultradispersive diamond powder, and quasicrystalls. PI films waste treatment was provided in high‐energy planetary ball mill. Powder compositions were mixed by low‐energy planetary ball mill. Bulk samples were obtained by compression molding. Structural and thermal properties of initial polymers and composite materials were determined from scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis and fourier transform infrared spectroscopy. Tribological tests of composite materials were provided in dry sliding regime on “pin‐on‐disk” tribometer. Finally, optimal regimes of polymer composite materials producing were obtained. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Recent advances in the development of high gauge factor thin films for strain gauges prompt the research on advanced substrate materials. A glass ceramic composite has been developed in consideration of a high coefficient of thermal expansion (9.4 ppm/K) and a low modulus of elasticity (82 GPa) for the application as support material for thin‐film sensors. In the first part, constantan foil strain gauges were fabricated from this material by tape casting, pressure‐assisted sintering, and subsequent lamination of the metal foil on the planar ceramic substrates. The accuracy of the assembled load cells corresponds to accuracy class C6. That qualifies the load cells for the use in automatic packaging units and confirms the applicability of the low‐temperature co‐fired ceramic (LTCC) substrates for fabrication of accurate strain gauges. In the second part, to facilitate the deposition of thin‐film sensor structures to the LTCC substrates, pressure‐assisted sintering step is modified using smooth setters instead of release tapes, which resulted in fabrication of substrates with low average surface roughness of 50 nm. Titanium thin films deposited on these substrates as test coatings exhibited low surface resistances of 850 Ω comparable to thin films on commercial alumina thin‐film substrates with 920 Ω. The presented material design and advances in manufacturing technology are important to promote the development of high‐performance thin‐film strain gauges.  相似文献   

15.
Low density polyethylene (LDPE)/clay nanocomposites, which can be used in packaging industries, were prepared by melt‐mix organoclay with polymer matrix (LDPE) and compatibilizer, polyethylene grafted maleic anhydride (PEMA). The pristine clay was first modified with alkylammonium salt surfactant, before melt‐mixed in twin screw extruder attached to blown‐film set. D‐spacing of clay and thermal behavior of nanocomposites were characterized by Wide‐Angle X‐ray Diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. WAXD pattern confirmed the increase in PEMA contents exhibited better dispersion of clay in nanocomposites. Moreover, DSC was reported the increased PEMA contents caused the decrease in degree of crystallinity. Mechanical properties of blown film specimens were tested in two directions of tensile tests: in transverse tests (TD tests) and in machine direction tests (MD tests). Tensile modulus and tensile strength at yield were improved when clay contents increased because of the reinforcing behavior of clay on both TD and MD tests. Tensile modulus of 7 wt % of clay in nanocomposite was 100% increasing from neat LDPE in TD tests and 17% increasing in MD tests. However, elongation at yield decreased when increased in clay loading. Oxygen permeability tests of LDPE/clay nanocomposites also decreased by 24% as the clay content increased to 7 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Several novel random copolymers of ethylene and 1‐olefin counits bearing a highly efficient phenolic antioxidant moiety placed at different distances from the polymerizable double bond were prepared in the presence of a metallocene catalyst. These copolymers were melt‐blended with an antioxidant‐free LDPE in an internal batch mixer to obtain innovative materials containing nonreleasing polymeric antioxidants suitable for safer food packaging applications. Blends and films, obtained by compression molding, were tested for their thermal and thermo‐oxidative stability by thermogravimetric analysis both in dynamic and isothermal conditions. Films containing the macromolecular antioxidants showed a longer induction time before O2 uptake starts and, consequently, a higher degradation temperature than neat LDPE or LDPE containing a low molecular weight commercial additive. Aging tests demonstrated that the new polymeric antioxidants also exert a valid protection against photo‐oxidation. Eventually, migration tests demonstrated the absence of any trace of products containing the antioxidant moiety when the films were kept in contact with a food simulant. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
In this work, 3% and 5% TiO2/Ag nanoparticles were dispersed in low‐density polyethylene through melt blending process, and subsequently nanocomposite films were prepared by hot pressing. Paraffin was used for the first time in this work as compatibilizer agent. The effect of TiO2/Ag nanoparticle content, as well as compatibilizer dosage on the antimicrobial, morphological, mechanical, and optical performance of the nanocomposite films was investigated. Improved mechanical properties of the nanocomposite films were found on using paraffin as compatibilizer in comparison with the neat low‐density polyethylene (LDPE) films. The optical study results also showed that the addition of TiO2/Ag to the LDPE films does not drastically change the film appearance other than making them more reddish. The fabricated nanocomposites presented in this study could be a suitable choice for food packaging (subject to further investigation of the food packaging behavior). The results showed that both TiO2/Ag nanoparticle and compatibilizer are needed to prevent the bacteria growth in the film. The best result was obtained by using 5% nanoparticle and 4% paraffin compatibilizer where the bacteria growth rate was significantly reduced by 95%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45913.  相似文献   

18.
Low‐density polyethylene (LDPE)/starch nanocomposite films were prepared by melt extrusion process. The first step includes the preparation of starch–clay nanocomposite by solution intercalation method. The resultant product was then melt mixed with the main matrix, which is LDPE. Maleic anhydride‐grafted polyethylene (MAgPE), produced by reactive extrusion, was used as a compatibilizer between starch and LDPE phases. The effects of using compatibilizer, clay, and plasticizers on physico‐mechanical properties were investigated. The results indicated that the initial intercalation reaction of clay layers with starch molecules, the conversion of starch into thermoplastic starch (TPS) by plasticizers, and using MAgPE as a compatibilizer provided uniform distribution of both starch particles and clay layers, without any need of alkyl ammonium treatment, in LDPE matrix. The nanocomposite films exhibited better tensile properties compared to clay‐free ones. In addition, the transparency of LDPE film did not significantly change in the presence of TPS and clay particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
This work was aimed to study the effect of natural polyphenols extract (Acacia nilotica bark) on physicochemical properties of crosslinked gelatin‐poly(acrylamide‐co‐acrylic acid), Gel‐poly(AAm‐co‐Ac), polymeric biocomposite film. Gelatin‐based composite films have extensive application as biocompatible biomaterial as drug carriers, cosmetics, and agricultural food packaging. The prepared composite films were characterized using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), in addition to the swelling and degradation behavior. UV‐Vis absorption spectra and scanning electron microscopy (SEM) were also applied to observe the interaction between Gel‐poly(AAm‐co‐Ac) and natural polyphenol (catechin). The study has demonstrated that the involvement of hydrogen bonding and hydrophobic interactions as the major forces involved in the stabilization of gelatin‐based polymeric biocomposite film by the plant polyphenols (catechin and gallic acid derivatives). Thermal stability studies of crosslinked gelatin‐based composite film revealed that A. nilotica bark extract stabilizes the gelatin molecules and leads to moderate increase of the denaturation temperatures relative to the uncrosslinked one. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Aluminum hypophosphite (AHP) was first used to improve the flame retardance of low‐density polyethylene (LDPE). The flame‐retardant properties of LDPE composites were investigated by the limiting oxygen index, vertical burning test (UL‐94), microscale combustion calorimetry, and cone calorimeter tests. The results showed that the incorporation of AHP could improve the flame retardancy of LDPE dramatically, the limiting oxygen index of LDPE containing 50 phr AHP reached 27.5%, and the UL‐94 could pass V‐0 rating. The cone calorimeter test results indicated that PP/AHP composite exhibited superior performance, and the heat release rate and the total heat release of composites were significantly reduced. In addition, the strength of the char was improved with the load of AHP increased. The structure of the char was researched by Fourier transform infrared spectrometry (FTIR) and scanning electron microscope‐energy dispersive spectrometer, and the results revealed that AHP promoted the formation of compact char layer. The TG‐FTIR analyses proved that AHP could react with LDPE to reduce the production of olefin in gas phase. Moreover, the structure of P–O–C was found, and the effective mechanism of AHP in LDPE composites was also hypothesized in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号