首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
利用电弧增材制造技术加工倾斜薄壁时,循环热力效应下,熔覆层与基板结合处应力较为集中,易导致基板变形翘曲,严重影响零部件的成形。为了明确增材倾斜薄壁不同层间偏移量和不同基板厚度下基板的热应力演化,本文采用不锈钢焊丝在Q235基板上进行沉积试验,利用COMSOL建立有限元模型,分析基板横向温度梯度和等效应力的变化。结果表明,基板的横向温度梯度在熔覆层边缘达到最大值,在距离熔覆层中心超过5 mm后趋于最小值;随着层间偏移量的增大,基板的横向温度梯度最大值逐渐减小,但基板上的等效应力逐渐增大;随着基板厚度的增加,基板的横向温度梯度最大值逐渐减小,同一测量点的横向温度梯度和等效应力也随之减小。因此,在倾斜薄壁增材中,不同的层间偏移量主要影响基板上横向温度梯度的分布和熔覆层与基板结合处的等效应力,更大厚度的基板能够有效减小基板上的横向温度梯度,从而减小变形,这对于增材初期倾斜薄壁结构中基板的变形控制具有一定的参考意义。  相似文献   

2.
目的 研究大厚度奥氏体不锈钢筒体填丝激光焊接,优化结构设计和工艺设计。方法 建立大厚度奥氏体不锈钢筒体填丝激光焊接数值分析模型,通过数值模拟的方法,定量分析大厚度奥氏体不锈钢筒体焊接变形和应力。结果 零件下部38 mm厚焊缝位置处的最大径向收缩量为1.2 mm;零件下部60 mm厚焊缝位置处的最大径向收缩量为2.0 mm;零件中部60 mm厚焊缝位置处的最大径向收缩量为1.9 mm;零件上部60 mm厚焊缝位置处的最大径向收缩量为1.8 mm。填丝激光焊接轴向收缩量为0.55 mm。焊接残余应力最大值在450 MPa左右,应力主要分布在焊缝附近。热处理后,焊接残余应力都有明显降低,最大残余应力从450 MPa左右降低到200 MPa左右,焊接残余应力范围存在一定程度减小;焊接残余变形变化较小,热处理后某些位置的变形略微有所增大。结论 模拟结果表明,大厚度奥氏体不锈钢筒体填丝激光焊接变形和应力在可接受范围内,焊后热处理对释放残余应力有重要作用。  相似文献   

3.
正0引言碳化硅颗粒增强铝基复合材料作为一种新型的金属基复合材料,因其具备高的比刚度、比强度及低的热膨胀系数、尺寸可设计性、高热导率和价格低廉等优点而备受广泛的关注和研究~([1-4])。其中热导率和热膨胀系数是碳化硅增强铝基复合材料在电子封装领域中的重要性能指标~([5]),电子元件在工作时产生大量热量,若不及时散热,将会导致芯片的失效;且两者的热膨胀性能需要相匹配,要求具有高的稳定性,防止材料变形对电子元件造成热应力损坏~([6-7])。因此获得综合热物理性能  相似文献   

4.
假设涂层和基体界面处于理想结合状态下,且不考虑涂层中缺陷的影响,采用有限元软件(ANSYS8.0)分析了5~30μm厚碳化硅涂层中的热变形和热应力.结果表明,在平面法线方向(z方向)上,涂层/基体系统在热应力作用下发生热屈曲,圆心处z方向热变形为0.05mm,而在边缘处2方向热变形为-0.08mm;热变形呈现轴对称的特点,其危险区域在上下表面的圆心部位,该处的热变形最大,也最容易造成该处涂层胀裂失效;对于不同直径的圆板,发生热屈曲时均存在一个类似的z方向零位移环,并且该z方向零位移环的位置与圆盘半径有关,而与涂层厚度无关;计算得出5~30μm厚碳化硅涂层中的热应力约为2.45~11.00GPa,该值远高于1mm厚4043铝合金基体中产生的热应力(24.68MPa);圆板热屈曲后拱起高度和热应力均随涂层厚度的增加而增加.  相似文献   

5.
李烨  石鑫 《真空》2011,48(6)
本文对MEMS硅压阻式压力传感器进行了相应理论的分析,并对其优缺点进行了论述.通过对微压力传感器芯片的探索,提出了一种新型结构:四岛平膜结构.运用仿真软件对四岛平膜型微压力传感器芯片进行了静力学分析.通过分析应力和形变平面云图及沿特定的路径分布图,发现该结构在边缘四边中点位置处出现应力的极大值,同时在芯片的四个凸起中间部位应力出现了明显的应力集中效应.将电阻放置在应力集中的区域,使其构成一个惠斯通全桥,可获得最大的电压输出.形变极大值远远小于传感器有效膜片的厚度,本文设计的传感器芯片的线性度良好.  相似文献   

6.
芯片尺度封装中焊线的应力分析研究   总被引:1,自引:0,他引:1  
芯片尺度封装(CSP)技术是近年来发展最为迅速的微电子封装新技术。通过对WB-CSP器件中金线(GoldWire)所受应力的有限元模拟,发现金线所受应力与塑封材料的膨胀系数、焊点大小、金线粗细、金线拱起高度等因素有关。结果表明:由于热失配引起的金线应力最大处位于金线根部位置,SEQVmax=625.202MPa,在通常情况下,这个部位在所承受的应力作用下产生的形变最大,最有可能发生断裂,引起器件的失效。模拟结果与实际失效情况相一致。此外,发现:当环氧树脂塑封料热膨胀系数为1.0×10-5/oC时,金线最大等效应力出现最小值,SEQVmax=113.723MPa,约为原来的1/6;随着金线半径减小、焊点增大,金线所受应力也将减小。模拟结果对于WB-CSP封装设计具有一定的指导意义。  相似文献   

7.
目的 保证割草机割草盘控制杆焊后的装配精度和尺寸稳定性.方法 采用Simufact Welding软件对割草盘控制杆焊接过程进行模拟仿真.通过建立合适的热源模型,得到焊后变形和焊接应力分布情况.结果 椭圆板焊缝处为焊接变形最大的区域,最大总变形量为0.73 mm;焊后最大等效应力为395.59 MPa,且沿焊缝两侧向外扩展,等效应力呈递减趋势.结论 通过工装优化方案,实现了焊后残余变形控制,最大变形量由0.73 mm降低到0.41 mm,且未引起焊接残余应力的上升,但焊后残余应力仍处于较高的水平,可通过焊后退火消除残余应力.  相似文献   

8.
为研究鸟撞风扇叶片过程中撞击位置及撞击姿态对风扇叶片瞬态冲击响应的影响,通过CT扫描建立光滑粒子流体动力学(smooth particle hydrodynamics, SPH)绿头鸭模型,根据相对速度原则对五个撞击位置和十五种撞击姿态的旋转风扇-鸟体撞击过程进行模拟。获得了撞击位置及撞击姿态对叶片不同位置应力响应及位移响应的影响规律。结果表明:在鸟撞叶片过程中叶片前后叶根以及前后缘易发生应力集中,在撞击过程中该区域最易发生损伤变形,且前叶根要比后叶根受到的应力更大,更易发生损伤变形;鸟撞击2/6叶高位置时,叶片受到的撞击力、叶根处及前缘处应力最大;Y-135°、Y-270°、Y-315°、Z-135°及Z-315°撞击姿态下前叶根受到的等效应力最大,Z-135°撞击姿态下后叶根受到的等效应力最大,Y-270°撞击姿态下前缘接触处位移最大。研究结果对航空发动机风扇叶片抗鸟撞设计及适航评估具有参考价值。  相似文献   

9.
为了研究变径管内高压成形过程中工艺参数和管坯几何尺寸对壁厚分布的影响,通过力学分析和全量本构方程,推导出变径管内高压成形厚度分界圆的解析公式.该公式反映了摩擦系数、膨胀系数、管端轴向应力与内压之比、送料区相对长度、管坯相对壁厚、零件过渡锥角等参数与厚度分界圆相对位置之间的定量关系,并与数值模拟规律一致.研究表明:随着摩擦系数、管端轴向应力与内压之比、送料区相对长度的增加,壁厚不变的厚度分界圆距离管端越来越近,即膨胀区壁厚减薄区域是越来越大的;而随着管坯相对壁厚的增加,壁厚不变的厚度分界圆距离管端越来越远,即膨胀区壁厚减薄区域是越来越小的.  相似文献   

10.
变厚度轮辐强力旋压成形过程的分析   总被引:1,自引:0,他引:1  
利用ABAQUS/Explicit模拟了变厚度轮辐双道次强力旋压过程,给出了建模和分析结果.轮辐旋压成形伴随板坯的剧烈减薄,收口区域较难成形,减薄率达50%,在计算中,轮辐有限元网格畸变严重,为此运用ALE技术改善网格质量,提高了计算精度.对模拟的旋压轮辐厚度与实验测量值进行了对比,二者吻合较好,验证了计算模型和结果的可靠性.通过ABAQUS/Standard计算了轮辐旋压成形后的回弹变形量和残余应力,分析成形后轮辐等效应变分布及回弹特征,研究发现,回弹变形量与旋压成形时壁厚变化量成正比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号