首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
生物质成型燃料热解特性及动力学研究   总被引:3,自引:0,他引:3  
杨帅  杨树斌  甘云华  黄开泉  杨泽亮 《节能技术》2010,28(3):199-201,205
利用NETZSCH STA409PC型热重-差热分析仪对生物质成型燃料在以10℃/min、20℃/min及30℃/min升温速率下的热解过程进行了热重分析。对TG-T、DTG-T曲线分析,结果表明生物质成型燃料热解过程分为干燥、热解预热、热解与炭化4个阶段,热解过程随着升温速率升高出现热滞后现象。对剧烈失重区间建立了反应动力学模型,求解出此温度区间的表观活化能、频率因子等动力学参数。  相似文献   

2.
应用热分析仪对柠条生物质燃料的燃烧过程进行分析,研究颗粒度、升温速率和风量对燃烧特性与动力学参数的影响。结果表明:(1)颗粒度为0.16 mm试样在升温速率为20 K/min,风量为40 mL/min的工况下,着火温度为221.1℃,最大燃烧速率温度为336.2℃,燃尽温度为559.4℃,最大燃烧速率0.6 mg/min,平均燃烧速率为0.129mg/min,相对于10 K/min和30 K/min升温速率,20 K/min工况下的燃料动力学参数最优,活化能为39.094 kJ/mol,频率因子为2.175×10~7L/min;(2)升温速率的增大会使平均燃烧速率和燃烧特性指数增大,着火温度降低;风量对燃烧速率无影响,但较大风量不利于挥发分析出和燃烧稳定性;颗粒度对挥发分析出有显著影响,颗粒度较大时需较高升温速率和风量才可充分燃烧,而颗粒度较小时即使风量较小也能充分燃烧。  相似文献   

3.
生物质加压热重分析研究   总被引:12,自引:0,他引:12  
对两种生物质木屑和松针进行了不同压力和升温速率下的热重分析试验,通过生物质热重失重率(TG)和失重速率(DTG)曲线,获得了相关热解特性参数,提出了生物质的挥发分综合释放特性指数D.并通过热分析数学方法求取了生物质热解动力学参数.试验结果表明,氮气气氛中,木屑与松针常压和增压下主要热解阶段可认为两段一级反应;热解压力的提高,将延迟生物质挥发分初析温度和DTG峰值温度,降低最大析出率和DTG峰值,生物质的挥发分综合释放特性指数D也减小,增加了生物质挥发分的析出难度,并改变了热解反应活化能和频率因子.同一压力下,提高热解升温速率,生物质综合特性指数D将增加.  相似文献   

4.
生物油热解及燃烧特性分析   总被引:2,自引:1,他引:1  
对由木粉热解所得的生物油样品分别进行了氮气与氧气气氛下不同升温速率的热重分析试验.结果表明:生物油的热解分为两个阶段,第一阶段为生物油中低沸点有机物的挥发以及各组分间反应生成各类产物的过程,第二阶段为各种重组分的裂解过程;生物油的燃烧分为3个阶段,即前期的挥发与裂解和最后焦炭的燃烧过程.提高升温速率使氮气气氛中生物油样品的初始失重温度、失重峰值温度及对应的最大失重速率均有所增大,且在较高升温速率(20℃min)下,较少含炭残余物形成.随升温速率升高,生物油着火温度提高,最终失重率无变化.最后根据热重数据对热解与燃烧各段反应进行了动力学拟合.  相似文献   

5.
木基和竹基生物质燃料燃烧动力学特性研究   总被引:1,自引:0,他引:1  
选用木基和竹基生物质燃料进行燃烧热重实验,分段推断其燃烧反应机理及拟合计算动力学参数,探究燃烧动力学特性随温度变化规律。结果表明:木基生物质燃料着火温度、燃尽温度、挥发分析出燃烧最大速率及其对应温度均低于竹基生物质燃料,焦炭燃烧阶段前者的燃烧速率大于后者;木基生物质燃料挥发分析出燃烧初期(260~280℃)和过渡阶段(360~440℃)燃烧反应机理为三维扩散机理(G11),挥发分析出燃烧及焦炭燃烧最大速率前后的机理函数不相一致,竹基生物质燃料整个燃烧反应过程可用同一机理函数描述。挥发分析出燃烧阶段,木基生物质燃料活化能随温度按"增加-下降-增加-下降"变化,竹基生物质燃料则先增加至峰值后下降。  相似文献   

6.
为解决陆地生物质资源短缺,开发水生生物质有效替代部分陆地生物质迫在眉睫。通过热重法研究玉米秸秆和海藻共同热解的特性,重点考察掺混比例和升温速率的影响,并对混合样品的热力学特性和动力学特性进行分析。结果显示,热解分为干燥、挥发分析出及焦炭热解三个阶段。掺配后的混合样品最终失重率与最大失重速率均小于纯秸秆与纯海藻。随着海藻掺配比例的增加,可燃性指数Ca先增大后减小,燃尽特性指数K递减,热解特性指数S先增大后减小。不同升温速率工况下,在热解区间(200~600℃),随着升温速率的升高,样品的热重曲线右移,失重率越来越大,最大失重速率先减小后增大,30℃/min时最小。Ca在递减,K、S呈增加趋势。动力学研究结果表明,不同掺配比例工况下,混合样品存在明显的协同作用,降低了共热解所需活化能。在不同升温速率工况下,升温速率越大,所需要的活化能越小,样品越容易发生热解。  相似文献   

7.
北方地区典型生物质的热重分析及动力学研究   总被引:2,自引:0,他引:2  
采用热重分析法对北方地区4种典型生物质玉米秆、棉花杆、杨树枝和苹果树枝做了热解与动力学特性的研究,实验采用了3种升温速率:20℃/min、40,℃/min和60,℃/min,加热终止温度900,℃.研究发现,生物质热解大致可以分为4个阶段,即失水阶段、过渡阶段、快速热解阶段、炭化阶段;玉米杆热解DTG曲线存在肩状峰现象;升温速率增加,生物质热解4个阶段的起始温度以及终止温度向高温侧移动,相对应的峰值温度升高,主要热解反应阶段温度区间变宽.建立了一级反应动力学模型,结果发现,随着升温速率的增加,生物质的活化能降低.  相似文献   

8.
在TGA/SDTA851热重分析仪上,以N_2为载气,在气体流速为20 mL/min,升温速率分别为20℃/min、40℃/min、60℃/min和80℃/min,终温1100℃的条件下,进行了煤液化残渣的热解特性研究实验,得到了不同升温速率下神华煤液化残渣热解的TG和DTG曲线,表明神华煤液化残渣的热解是分两步进行的.在低温段主要是神华煤液化残渣中挥发性的气体溢出引起热解失重,在低温度段180~450℃,挥发分迅速释放;高温段则主要是一些高分子有机质的热解过程.此外,研究了粒径对热解特性的影响.研究发现,随着粒径的增加,残渣的最大挥发分释放速率逐渐减小,而最大挥发分释放速率对应的温度逐渐增加.利用Freeman-Carroll法得到煤液化残渣的动力学参数,为煤液化残渣的有效和经济利用提供理论依据.  相似文献   

9.
针对我国垃圾焚烧飞灰高氯含量的特点,以ZnCl2为研究对象,首先利用热力学Gibbs自由能判据理论对空气气氛下ZnCl2的高温挥发过程进行理论预测,然后利用高温热重差热分析仪(TG-DTA)研究升温速率(10℃/min、15.℃/min、20.℃/min)对其的影响,并结合热力学分析建立ZnCl2高温挥发的本征动力学模型.热力学分析表明,ZnCl2的高温挥发主要是ZnCl2离子晶体的相变过程和向ZnO的转变过程;随着升温速率的增大,挥发反应TG曲线向高温方向移动,挥发反应的各特征温度和挥发率都有所升高.动力学分析表明,零级反应动力学可以很好地描述ZnCl2的高温挥发反应.  相似文献   

10.
在热重分析仪上进行了空气气氛、不同升温速率下几种木材的热解动力学过程的研究.对不同升温速率以及木材种类对失重过程的DTG曲线的影响进行了深入分析,在热重实验的基础上建立了"双组分两阶段反应"模型来描述空气气氛下木材的热解动力学过程,并利用C-R方法求得了对应失重阶段的动力学参数.在火灾早期特性实验台上进行了4种木材在空气气氛、不同辐射热流下的热解与燃烧过程的特性研究,通过对高、低热流下几种木材表面温度变化、失重率以及着火时间等参数的对比,发现在较高热流下,固定碳含量相似的几种木材的反应机理及其表观热行为趋于一致.  相似文献   

11.
对比分析了麦秆及其酶解残渣的基础物化特性,利用热重−红外联用技术研究了酶解残渣的热解反应过程及其主要气体产物的析出特性,并用混合反应模型计算了酶解残渣热解过程的表观动力学参数。结果表明,麦秆酶解残渣是一种富含木质素的高灰分、低热值的生物质原料,与麦秆原料相比,其热解过程相对平缓,主要失重温度区间为200℃ ~ 800℃,最大失重峰为350℃,与木质素的热解特性相近;提高升温速率可以使酶解残渣热解反应剩余产物质量明显减少,最大失重速率提高;热解主要气体产物中CH4析出的温度区间为400℃ ~ 700℃,CO和CO2在380℃、450℃和650℃都存在析出峰。动力学分析结果表明,酶解残渣热解过程在低温区(200℃ ~ 350℃)和高温区(350℃ ~ 800℃)分别遵循一级和二级反应动力学规律。  相似文献   

12.
利用自主开发的急速加热和快速质谱气固相反应分析仪进行了CO2钙基吸附剂N2气氛中300℃/s、500℃/s、600℃/s、800℃/s高加热速率下释放机理的研究,实验发现CaCO3的热分解速率随着加热速率的提高而提高。根据最可几动力学模型函数判定方法,求得动力学三因子为:E = 129.38 kJ/mol,n = 6/5,A = 806 129 s-1,反应动力学模型函数为:f(α)=5/2(1-α)[-ln(1-α)]3/5。结果表明,急速加热器中CaCO3分解反应速率比在热重分析仪(thermo gravimetric analyzer, TGA)中快,活化能小于同条件下TGA测得的活化能,且动力学机理符合随机成核及长大模型,与TGA等慢速加热实验中测得的收缩核模型存在较大差异。  相似文献   

13.
在Aspen Plus平台上构建生物质移动床热解多联产系统模型,通过对秸秆热解过程的模拟,研究了生物炭、生物油和生物燃气三态热解产物特性,以及热解温度对系统燃料投入、水耗和电耗的影响。结果表明,随热解温度升高,生物炭热值逐渐增大。生物油和生物燃气的产率分别在450℃和650℃附近达到最大值。当热解温度为450℃时,生物油重质组分主要由糖衍生类和脂肪酸类物质构成,而轻质组分主要包括醛类、醇类和水;当热解温度为650℃时,生物燃气则主要由CO2和CO构成。生产过程中,系统的燃料消耗和电耗均随着热解温度的升高而增大,冷却水消耗量则经历先减少后增加的过程,并在450℃附近达到最小值。  相似文献   

14.
根据生物质种类,选取果实类生物质花生壳、木质类生物质锯末和草本类生物质竹子为对象,考察烘焙条件对生物质特性的影响。利用管式炉为烘焙实验主要装置,结合工业分析仪、元素分析仪等,考察三种生物质在烘焙温度为200 ~ 300℃和时间为30 ~ 90 min条件下烘焙产物的挥发分、固定碳含量、O/C和H/C、质量产率等,并引入烘焙程度指数来衡量烘焙前后的能量变化。实验结果表明:随着烘焙温度的升高,固定碳含量增加到40%以上,挥发分含量减少到50%以下,质量产率也随之下降。烘焙时间的影响弱于烘焙温度,随着烘焙温度的升高,烘焙时间对固体产率的影响逐渐显现,烘焙时间越长,固体产率越低。烘焙温度高于280℃、时间大于60 min时,烘焙后固体的能量产率仅为70%左右。O/C和H/C随烘焙温度升高而降低,草本类生物质竹子的能量产率受温度影响最大。果实类生物质花生壳、木质类生物质锯末的能量产率随烘焙程度指数增大而减小,而草本类生物质竹子的能量产率则呈先增后减的抛物线型,在烘焙程度为0.5时,竹子的能量产率达到最大值。各生物质烘焙程度指数的R2值均大于0.93,因此烘焙程度指数可被视为描述或预测生物质烘焙性能的可行指标。  相似文献   

15.
实验研究了广东省典型农业生物质稻杆、甘蔗渣/叶的燃烧结渣特性。采用GB/T212-2001和ASTM E1755标准进行灰化实验,采用角锥法和一步法检测生物质的熔融特性。实验结果证实ASTM的低温灰化标准更适合稻杆类高无机盐含量的生物质原料。稻杆中碱金属氧化物含量达20%以上,是导致灰渣粘结和熔融的主要因素。由于角锥法灰熔点检测法提前将部分碱金属和Cl元素转化和析出,导致检测结果远高于实际燃烧的熔融温度;相比而言,一步法更具有直观性和指导作用。通过一步法实验获得稻杆临界结渣温度为700℃ ~ 750℃,甘蔗渣为850℃ ~ 900℃,甘蔗叶为900℃ ~ 950℃。CaO和Al2O3添加剂对于生物质燃烧过程具有一定的抗结渣功能,CaO通过与SiO2 (s) 反应生成高熔点的固态Ca3Si2O7 (s) 和MgOCa3O3Si2O4 (s),因此能消耗物料周围的SiO2 (s),抑制低温共融;Al2O3则通过生成高熔点温度的固态KAlSiO4和固态KAlSi2O6,减少低温共熔现象的发生。  相似文献   

16.
应用TGA/FTIR研究了橡胶的三种单体:天然橡胶(Nr)、丁苯橡胶(Sbr)和顺丁橡胶(Br)在N2和O2的体积分数为2%的气氛中的燃烧特性。橡胶单体的热解可分为2-3个阶段,其中Sbr的初始失重温度和Nr完全失重的温度最低,在失重过程中析出气体的燃烧和橡胶热解相对量的变化引起吸热与放热现象的交替变化;热解与燃烧产物主要为CO、CO2和CHn,它们的生成速率随升温速率的升高而增加,其总量保持不变,最后应用Phadin提出的方法计算了动力学参数和确定了反应机理,指出在弱氧条件下橡胶的燃烧主要受扩散控制。  相似文献   

17.
为研究并开发高性能的吸附剂,本文以CaCl2和杉木木屑为原料,采用炭化活化造孔的方法制备复合吸附剂,考察了炭化活化温度对复合吸附剂性能的影响,炭化活化温度分别选择400℃、500℃、600℃和700℃。扫描电镜照片和元素分布图表明,复合吸附剂具有发达的孔隙结构而且CaCl2分布均匀。NH3吸附性能实验表明,吸附剂4 h的NH3吸附量随炭化活化温度的升高而增加。而对于吸附制冷而言,500℃炭化活化温度下制备的复合吸附剂具有最好的性能,其30 min的吸附量达到0.488 g/g。  相似文献   

18.
研究了燃气热泵(GHP)系统在过渡季节制备生活热水的性能特性,分析了发动机余热回收对GHP系统性能的影响。在不同环境温度(15~24℃)和进水温度(37.7~47.8℃)下,考察回收与不回收发动机余热模式对生活热水制热量■、耗气功率(Pgas)及一次能源利用率(rPER)的影响规律。结果表明,随着环境温度的升高,Pgas减小,而■和rPE R呈现递增的趋势;随着进水温度的升高,Pgas增大,而■和rPER呈现递减的趋势。其中环境温度20~24℃与进水温度37.7~47.8℃为Qh的不敏感区间,在环境温度为24℃和进水温度为37.7℃条件下,rPER高达2.004。GHP系统的余热回收量分别占总制热量和发动机总余热的25.00%~30.16%和62.17%~71.56%,系统的余热利用率高。  相似文献   

19.
基于熔融浸渗法和黏结封装法,以多孔基作为基体材料,分别采用无机玻璃粉与熔盐作为相变材料开展实验,探究储热样本的最佳制备工艺流程。考察了复合相变蓄热体的显微结构及物相组成特征,分析了复合相变蓄热材料的质量损失率,并对蓄热体进行蓄热性能分析及高温抗压强度测试。实验结果表明,采用黏结封装法,以氯化钠作为相变材料,加盖圆柱形三角孔蜂窝陶瓷基体作为载体,设定6.5℃/min的升温速率,烧结温度至800℃,保温30 min,可制备蓄热性能较为优异的复合相变蓄热材料。复合相变蓄热材料的蓄热密度为445.5 kJ/kg,该蓄热体在800℃条件下高温抗压强度达到75.9 MPa,具有良好的蓄热性能和力学性能。  相似文献   

20.
In this work, the co‐pyrolysis characteristics of oil shale with two typical coals, bitumite and lignite, and the co‐gasification characteristics of the mixture pyrolyzed fuels were studied via thermo‐gravimetric analysis. The individual fuels and mixture fuels were first pyrolysis in N2 atmosphere to specified temperature (450, 550, and 620 °C) at the heating rate of 20, 30 and 40 °C/min, respectively, and then maintained at the given temperature for 20 min before converted to CO2 ambient to conduct the CO2 gasification tests. The kinetic behavior and effects of both fuel types and pyrolysis temperature were investigated. The shoulder peak at around 550 °C observed in the derivative of weight loss derivative thermogravimetry analysis (DTG) curve during the pyrolysis of oil shale has confirmed the existence of specific reactions of oil shale at around 550 °C that leads to a sharp trough in the differential curves of co‐pyrolysis with coals and the unusual change in activation energies of gasification. In isothermal pyrolysis stage, oil shale lost its vast majority of organic matters at the temperature lower than 550 °C. The escape of pyrolysis gas and liquids in the coals is much harder than that in oil shale. The interaction between oil shale and bitumite was too weak to discriminate both in the pyrolysis and CO2 gasification process. The variation of the particle surface structure caused by the releasing of volatile gases is strongly affected by the reaction rate and temperature. Quick volatile decomposition and gas releasing lead to the increase of surface area, decrease of the average pore diameter as well as the uniformization of the pore structure, while the higher temperature results in the blockade and merging of fine pores. The two factors lead to the greatest mass loss rate in the pyrolyzed particles obtained at 550 °C in temperature programmed CO2 gasification stage. Two model‐free methods, Friedman method and Flynn–Wall–Ozawa method, were used to extract kinetic parameters from the experimentally determined pyrolyzed fuel conversions. The volatile contend has a significant influence on the fixed carbon conversion during the partially pyrolyzed particles' CO2 gasification. In this study, significant interactions existed in co‐thermal utilization, both pyrolysis and CO2 gasification, of oil shale and lignite. It is therefore surmised that co‐gasification of pyrolyzed lignite and oil shale may represent a feasible, practical route to high‐efficiency utilization of these fuels. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号