首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Data obtained in an experimental study of the photoelectric characteristics of silicon–silicon carbide structures grown by the atomic substitution method on silicon (100) and (111) substrates are presented. It is found that the maximum sunlight conversion efficiency of a silicon–silicon carbide (silicon carbide–silicon) heterojunction is 5.4%. The theory of dilatation dipole formation upon synthesis by the atomic substitution method is used to account for the mechanism of electrical barrier formation at the silicon–silicon carbide interface.  相似文献   

2.
Discharging process by multiple tunnelings is proposed and studied theoretically in thin-oxide MNOS structures. Traps at the silicon dioxide-silicon nitride interface and in silicon nitride layer are taken into account. Three tunneling processes are considered in the analysis. Those are (i) from the interface to silicon conduction band, (ii) from the silicon nitride layer to silicon conduction band, and (iii) from the silicon nitride layer to the interface (and then to silicon conduction band). From the analysis of these tunneling processes, physical interpretation for the maximum tunneling distance is derived.  相似文献   

3.
Silicon FEA will affect the high frequency application of field emission tubes when it works at the microwave frequency range. This article shows that the electron emitting will be influenced by the majority carrier response time in semiconductor silicon. The surface capacitance and delay time of n-type and p-type silicon are calculated by using semiconductor theory. The result shows that the semiconductor conductivity will determine the maximum work frequency of device. The maximum work frequency (no considering other effects such as Cgc, gm etc.) will be decreased from about 200 GHz to 2 GHz when the resistivity of p-type silicon is increased from 0.1 Ω · cm to 10 Ω cm.  相似文献   

4.
飞秒激光扫描不同温度下的硅片诱导形成微结构的差别   总被引:2,自引:0,他引:2  
柳岿  冯国英  邓国亮  李玮 《中国激光》2012,39(8):803003-66
不同温度下利用钛宝石激光器输出的飞秒激光脉冲(脉宽42fs,中心波长800nm,最大单脉冲能量3.6mJ),通过扫描方式在硅表面诱导产生表面微结构。采用光学显微镜和扫描电镜观察飞秒激光诱导硅表面微结构的形貌,发现不同温度下硅片表面形成的微结构区域和形貌出现明显的差异。根据观测结果,分析比较了不同温度条件下硅材料微结构形成的能量阈值。随着温度升高,形成的微结构区域减小,飞秒激光诱导形成硅表面微结构的能量阈值升高。这对于研究飞秒激光与物质的相互作用有一定的参考价值,也能对将来实现硅表面微结构的制作提供参考。  相似文献   

5.
The available published experimental data on the maximum possible concentration of sulfur dissolved in silicon as a function of temperature are analyzed. The authors?? recent results demonstrate that the amount of sulfur dissolved in silicon crystals is approximately two times the reference values, which is in agreement with the data given by a number of other studies.  相似文献   

6.
针对薄膜太阳能电池硅薄膜层吸收效率较低的问题,提出了运用金属纳米粒子局域表面等离子体共振(LSPR)增强太阳能电池的吸收效率,采用时域有限差分(FDTD)法,模拟计算了太阳能电池中不同厚度的硅薄膜层吸收特性,分析了不同几何参数的矩形Ag纳米粒子与Ag背反射膜对增强太阳能电池吸收效率的影响作用。计算结果表明,硅薄膜层厚度为500nm的太阳能电池具有较高的吸收效率,通过调整Ag纳米粒子的相关参数,有效地降低了太阳电池硅薄膜表面的反射损耗,取得最大吸收增强因子为1.35。Ag背反射膜有效地降低了Ag纳米粒子硅薄膜结构的透射损耗,其最大的吸收增强因子达到1.42。  相似文献   

7.
Mok  T.D. Salama  C.A.T. 《Electronics letters》1974,10(23):478-480
A junction field-effect transistor with a V-shaped notched channel fabricated by preferential etching of (100) silicon is described. This transistor exhibits a higher maximum transconductance and a lower turn-on resistance than conventional silicon f.e.t.s. with rectangular channels. The fabrication, characteristics and possible applications of this device are described.  相似文献   

8.
Surface engineering of silicon nanocrystals directly in water or ethanol by atmospheric‐pressure dc microplasma is reported. In both liquids, microplasma processing stabilizes the optoelectronic properties of silicon nanocrystals. The microplasma treatment induces non‐equilibrium liquid chemistry that passivates the silicon nanocrystals surface with oxygen‐/organic‐based terminations. In particular, the microplasma treatment in ethanol drastically enhances the silicon nanocrystals photoluminescence intensity and causes a clear red‐shift (≈80 nm) of the photoluminescence maximum. The photoluminescence properties are stable after several days of storage in either ethanol or water. The surface chemistry induced by the microplasma treatment is analyzed and discussed.  相似文献   

9.
The liquid phase deposition of silicon dioxide (LPD-SiO2) at 50°C has been successfully applied as the gate insulator for inverted, staggered amorphous silicon thin-film transistors (TFTs). The maximum field-effect mobility of the TFTs, estimated from the saturation region, was 0.53 cm2/V-s, comparable to that obtained for conventional, silicon nitride (SiNx ) gate transistors. The threshold voltage and subthreshold swing were 6.2 V and 0.76 V/decade, respectively. Interface and bulk characteristics are as good as those obtained for silicon nitride (SiN x) films deposited by plasma enhanced chemical vapor deposition  相似文献   

10.
A continuous-wave hybrid AlGaInAs-silicon evanescent laser   总被引:1,自引:0,他引:1  
We report a novel laser architecture, the hybrid silicon evanescent laser (SEL), that utilizes offset AlGaInAs quantum wells (QWs) bonded to a silicon waveguide. The silicon waveguide is fabricated on a silicon-on-insulator wafer using a complimentary metal-oxide-semiconductor-compatible process, and is subsequently bonded with the AlGaInAs QW structure using low temperature O/sub 2/ plasma-assisted wafer bonding. The optical mode in the SEL is predominantly confined in the passive silicon waveguide and evanescently couples into the III-V active region providing optical gain. The SEL lases continuous wave (CW) at 1568 nm with a threshold of 23 mW. The maximum temperature for CW operation is 60/spl deg/C. The maximum single-sided fiber-coupled CW output power at room temperature is 4.5 mW.  相似文献   

11.
用电化学方法制备了含有纳米硅点的光致发光二氧化硅膜,发现其激发谱分别在246 nm 及506 nm 附近有极大值。当激发波长在506 nm 附近时,观测到一个强度很弱但发射谱线宽度只有约0 .05 eV 的发光带,远小于250 nm 激发时的发射光谱的宽度( 约0 .50 eV) 。此窄发光带的发光波长及峰型随激发波长的变化而变化,分析表明它起源于硅氧化合物中的纳米硅点,而短波长(250 nm) 光波激发时的宽发射谱主要来自于二氧化硅中的杂质与缺陷  相似文献   

12.
Excitonic effects are known to enhance the rate of intrinsic recombination processes in crystalline silicon. New calculations for the limiting efficiency of silicon solar cells are presented here, based on a recent parameterization for the Coulomb‐enhanced Auger recombination rate, which accounts for its dopant type and dopant density dependence at an arbitrary injection level. Radiative recombination has been included along with photon recycling effects modeled by three‐dimensional ray tracing. A maximum cell efficiency of 29.05% has been calculated for a 90‐μm‐thick cell made from high resistivity silicon at 25°C. For 1 Ω cm p‐type silicon, the maximum efficiency reduces from 28.6% for a 55‐μm‐thick cell in the absence of surface recombination, down to 27.0% for a thickness in the range 300–500 μm when surface recombination limits the open‐circuit voltage to 720 mV. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single‐mode silicon waveguide, which is necessary for a wavelength‐division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of 3.7µm. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 µm), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.  相似文献   

14.
薄膜表面粗糙度是表征薄膜质量的重要指标,为了探求环境气压对脉冲激光烧蚀沉积纳米Si薄膜表面粗糙度的影响,采用XeCl脉冲准分子激光器,分别在惰性气体氦气和氩气的不同气压环境下烧蚀沉积了纳米Si薄膜,用Tencor Instruments Alpha-Step 200台阶仪对相应薄膜的表面粗糙度进行了测量.结果表明,薄膜表面粗糙度开始随着气压的增大而逐渐增加,在达到一最大值后便随着气压的增大而减小.由不同气体环境下的结果比较可以看出,充氩气所得Si薄膜表面粗糙度比充氦气的小,最大粗糙度强烈地依赖于气体种类.对于原子质量较大的氩气而言,其最大粗糙度仅比低气压时高出11%,而对于原子质量较小的氦气来说,其最大粗糙度比低气压时高出314%.  相似文献   

15.
Numerical calculations have been made of the effect of grain size on the short-circuit current and the AM1 efficiency of polycrystalline thin-film GaAs and InP (2 µm thick) and silicon (25 µm thick) p-n junction solar cells. Junction solar cells are seen to be more efficient than Schottky-barrier cells, due to the higher dark current associated with Schottky diodes. GaAs shows the highest efficiency and both GaAs and InP attain 90 percent of their maximum efficiencies at a grain size of 10 µm, while silicon requires grain sizes of 200 µm to attain 90 percent of maximum efficiency. However, the deleterious effect of poor lifetimes and mobilities is less for silicon polycrystalline cells than for the direct-bandgap devices.  相似文献   

16.
In this work we report a technique that is potentially capable of increasing the efficiency of crystalline silicon solar cells, which dominate the present-day market of photovoltaic devices. The simple and cost-effective method involves coating the surface of a commercially procured silicon solar cell with luminescent silicon nanocrystals. Core/shell silicon/silicon-oxide nanostructures are fabricated by an inexpensive and reproducible technique, where coarse silicon powders are repeatedly milled, oxidized, and etched until their sizes are reduced so as to exhibit room-temperature photoluminescence under ultraviolet excitation. A thin coating of these nanostructures on a standard solar cell, obtained by a simple dip-coating method, increases the open-circuit voltage and short-circuit current, which consequently increases the maximum power delivered by ~16.3% and efficiency by almost ~39%. We propose that the core/shell nanostructures act as luminescent convertors that convert higher-energy photons to lower-energy photons, thereby leading to less thermal relaxation loss of photoexcited carriers.  相似文献   

17.
The absorption enhancements of silicon layer in silicon solar cells with three kinds of Ag nanoparticles including sphere, cylinder and cuboid are studied by the finite difference time domain (FDTD) method, respectively. The results show that the light absorption of silicon is significantly improved due to the localized surface plasmon (LSP) reso- nance. The relations of the absorption enhancement with the parameters of nanoparticles are thoroughly analyzed. The optimal absorption enhancement can be achieved by adjusting the relevant parameters. Among the three types of Ag nanoparticles, i.e., sphere, cylinder and cuboid, the silicon with the cubical Ag nanopaticles shows the most efficient absorption enhancement at optimal conditions, its maximum absorption enhancement factor is 1.35, and that with the spherical Ag nanopaticles gets the lowest absorption enhancement. The work is useful for the further theoretical study and design for the plasmonic thin-film solar cell.  相似文献   

18.
在薄膜SOI衬底上制备普通电阻结构的硅温度传感器,并具有令人满意的特性:即使在0.1mA的低偏置电流下,器件的最高温度工作温度仍能达到550℃.实验结果分析说明,当硅膜足够薄时,普通电阻结构中可表现出较强的少数载流子排斥效应,大大提高了本征转折温度,从而提高器件的最高工作温度.同时,由于薄膜SOI温度电阻的结构对器件最高工作温度的影响不大,因而传感器的器件结构可以根据需要来选择.  相似文献   

19.
Thin film silicon oxide capacitors with nonshorting breakdowns were investigated. Breakdowns appear in three forms: single hole, self-propagating, and maximum voltage breakdowns. Single hole and self-propagating breakdowns occur at flaws, and self-propagating breakdowns develop only when the resistor to the source is relatively small, less than 10 kΩ in these experiments. After flaws are burned out by single hole breakdowns, with larger source resistors the maximum voltage breakdown can be observed, destroying the whole capacitor simultaneously. Plotting current against voltage, the current increase is quasi-exponential, but prior to maximum voltage breakdown, the current continues to increase while the voltage decreases slightly below a maximum value Vm. Assuming thermal instability as the cause for this change in the I-V relationship, we have derived an expression for the maximum voltage Vm. Calculated results for fields up to 9.5 MV/cm were found to agree well with measurements for temperatures from -145°C to 65°C and for thicknesses from 3000 Å to 50 000 Å. Fmdecreases with increasing temperature and thickness of insulation, and is higher for silicon dioxide than for silicon monoxide films. Maximum voltage breakdown occurs when the quasi-exponential increase of leakage current with field produces thermal instability over the whole capacitor area. The maximum dielectric strength is characteristic of the whole capacitor and is determined by its electrical and thermal conductance.  相似文献   

20.
A dynamic frequency divider applying the regenerative frequency division principle has been developed. A spiral inductor on the silicon substrate used as a load is characterized, and an improved one-port model with the substrate resistance is discussed. A 1/16 frequency divider was implemented with a silicon bipolar technology with a cutoff frequency of 40 GHz. The operation frequency range was 11.8-28.1 GHz, covering the Ka band (18-26.5 GHz). The inductive load has improved the maximum operation frequency by 7%, compared with a conventional circuit. Complemented with a 21-GHz static frequency divider previously reported by the authors, the whole microwave frequency range up to 26.5 GHz has been completely covered with the silicon bipolar technology. The maximum operation frequency of a silicon MMIC has been extended to the millimeter-wave frequency region for the first time  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号