首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不平衡数据集分类为机器学习热点研究问题之一,近年来研究人员提出很多理论和算法以改进传统分类技术在不平衡数据集上的性能,其中用阈值判定标准确定神经网络中的阈值是重要的方法之一。常用的阈值判定标准存在一定缺点,如不能使少数类及多数类分类精度同时取得最好、过于偏好多数类的精度等。为此提出一种新的阈值判定标准,依据该标准能够使少数类及多数类分类精度同时取得最好而不受样例类别比例的影响。以神经网络与遗传算法相结合训练分类器,作为阈值选择条件和分类器的评价标准,新标准能够得到较好的结果。  相似文献   

2.
The present paper investigates the influence of both the imbalance ratio and the classifier on the performance of several resampling strategies to deal with imbalanced data sets. The study focuses on evaluating how learning is affected when different resampling algorithms transform the originally imbalanced data into artificially balanced class distributions. Experiments over 17 real data sets using eight different classifiers, four resampling algorithms and four performance evaluation measures show that over-sampling the minority class consistently outperforms under-sampling the majority class when data sets are strongly imbalanced, whereas there are not significant differences for databases with a low imbalance. Results also indicate that the classifier has a very poor influence on the effectiveness of the resampling strategies.  相似文献   

3.
高锋  黄海燕 《计算机科学》2017,44(8):225-229
不平衡数据严重影响了传统分类算法的性能,导致少数类的识别率降低。提出一种基于邻域特征的混合抽样技术,该技术根据样本邻域中的类别分布特征来确定采样权重,进而采用混合抽样的方法来获得平衡的数据集;然后采用一种基于局部置信度的动态集成方法,通过分类学习生成基分类器,对于每个检验的样本,根据局部分类精度动态地选择最优的基分类器进行组合。通过UCI标准数据集上的实验表明,该方法能够同时提高不平衡数据中少数类和多数类的分类精度。  相似文献   

4.
基于集成聚类的流量分类架构   总被引:1,自引:0,他引:1  
鲁刚  余翔湛  张宏莉  郭荣华 《软件学报》2016,27(11):2870-2883
流量分类是优化网络服务质量的基础与关键.机器学习算法利用数据流统计特征分类流量,对于识别加密私有协议流量具有重要意义.然而,特征偏置和类别不平衡是基于机器学习的流量分类研究所面临的两大挑战.特征偏置是指一些数据流统计特征在提高部分应用识别准确率的同时也降低了另外一部分应用识别的准确率.类别不平衡是指机器学习流量分类器对样本数较少的应用识别的准确率较低.为解决上述问题,提出了基于集成聚类的流量分类架构(traffic classification framework based on ensemble clustering,简称TCFEC).TCFEC由多个基于不同特征子空间聚类的基分类器和一个最优决策部件构成,能够提高流量分类的准确率.具体而言,与传统的机器学习流量分类器相比,TCFEC的平均流准确率最高提升5%,字节准确率最高提升6%.  相似文献   

5.
Real-life datasets are often imbalanced, that is, there are significantly more training samples available for some classes than for others, and consequently the conventional aim of reducing overall classification accuracy is not appropriate when dealing with such problems. Various approaches have been introduced in the literature to deal with imbalanced datasets, and are typically based on oversampling, undersampling or cost-sensitive classification. In this paper, we introduce an effective ensemble of cost-sensitive decision trees for imbalanced classification. Base classifiers are constructed according to a given cost matrix, but are trained on random feature subspaces to ensure sufficient diversity of the ensemble members. We employ an evolutionary algorithm for simultaneous classifier selection and assignment of committee member weights for the fusion process. Our proposed algorithm is evaluated on a variety of benchmark datasets, and is confirmed to lead to improved recognition of the minority class, to be capable of outperforming other state-of-the-art algorithms, and hence to represent a useful and effective approach for dealing with imbalanced datasets.  相似文献   

6.
现实生活中存在大量的非平衡数据,大多数传统的分类算法假定类分布平衡或者样本的错分代价相同,因此在对这些非平衡数据进行分类时会出现少数类样本错分的问题。针对上述问题,在代价敏感的理论基础上,提出了一种新的基于代价敏感集成学习的非平衡数据分类算法--NIBoost(New Imbalanced Boost)。首先,在每次迭代过程中利用过采样算法新增一定数目的少数类样本来对数据集进行平衡,在该新数据集上训练分类器;其次,使用该分类器对数据集进行分类,并得到各样本的预测类标及该分类器的分类错误率;最后,根据分类错误率和预测的类标计算该分类器的权重系数及各样本新的权重。实验采用决策树、朴素贝叶斯作为弱分类器算法,在UCI数据集上的实验结果表明,当以决策树作为基分类器时,与RareBoost算法相比,F-value最高提高了5.91个百分点、G-mean最高提高了7.44个百分点、AUC最高提高了4.38个百分点;故该新算法在处理非平衡数据分类问题上具有一定的优势。  相似文献   

7.
分类是模式识别领域中的研究热点,大多数经典的分类器往往默认数据集是分布均衡的,而现实中的数据集往往存在类别不均衡问题,即属于正常/多数类别的数据的数量与属于异常/少数类数据的数量之间的差异很大。若不对数据进行处理往往会导致分类器忽略少数类、偏向多数类,使得分类结果恶化。针对数据的不均衡分布问题,本文提出一种融合谱聚类的综合采样算法。首先采用谱聚类方法对不均衡数据集的少数类样本的分布信息进行分析,再基于分布信息对少数类样本进行过采样,获得相对均衡的样本,用于分类模型训练。在多个不均衡数据集上进行了大量实验,结果表明,所提方法能有效解决数据的不均衡问题,使得分类器对于少数类样本的分类精度得到提升。  相似文献   

8.
陈刚  吴振家 《控制与决策》2020,35(3):763-768
非平衡数据的分类问题是机器学习领域的一个重要研究课题.在一个非平衡数据里,少数类的训练样本明显少于多数类,导致分类结果往往偏向多数类.针对非平衡数据分类问题,提出一种基于高斯混合模型-均值最大化方法(GMM-EM)的概率增强算法.首先,通过高斯混合模型(GMM)与均值最大化算法(EM)建立少数类数据的概率密度函数;其次,根据高概率密度的样本生成新样本的能力比低概率密度的样本更强的性质,建立一种基于少数类样本密度函数的过采样算法,该算法保证少数类数据集在平衡前后的概率分布的一致性,从数据集的统计性质使少数类达到平衡;最后,使用决策树分类器对已经达到平衡的数据集进行分类,并且利用评价指标对分类效果进行评判.通过从UCI和KEEL数据库选出的8组数据集的分类实验,表明了所提出算法比现有算法更有效.  相似文献   

9.
In this paper we consider induction of rule-based classifiers from imbalanced data, where one class (a minority class) is under-represented in comparison to the remaining majority classes. The minority class is usually of primary interest. However, most rule-based classifiers are biased towards the majority classes and they have difficulties with correct recognition of the minority class. In this paper we discuss sources of these difficulties related to data characteristics or to an algorithm itself. Among the problems related to the data distribution we focus on the role of small disjuncts, overlapping of classes and presence of noisy examples. Then, we show that standard techniques for induction of rule-based classifiers, such as sequential covering, top-down induction of rules or classification strategies, were created with the assumption of balanced data distribution, and we explain why they are biased towards the majority classes. Some modifications of rule-based classifiers have been already introduced, but they usually concentrate on individual problems. Therefore, we propose a novel algorithm, BRACID, which more comprehensively addresses the issues associated with imbalanced data. Its main characteristics includes a hybrid representation of rules and single examples, bottom-up learning of rules and a local classification strategy using nearest rules. The usefulness of BRACID has been evaluated in experiments on several imbalanced datasets. The results show that BRACID significantly outperforms the well known rule-based classifiers C4.5rules, RIPPER, PART, CN2, MODLEM as well as other related classifiers as RISE or K-NN. Moreover, it is comparable or better than the studied approaches specialized for imbalanced data such as generalizations of rule algorithms or combinations of SMOTE + ENN preprocessing with PART. Finally, it improves the support of minority class rules, leading to better recognition of the minority class examples.  相似文献   

10.
传统的过采样方法是解决非平衡数据分类问题的有效方法之一。基于SMOTE的过采样方法在数据集出现类别重叠(class-overlapping)和小析取项(small-disjuncts)问题时将降低采样的效果,针对该问题提出了一种基于样本局部密度的过采样算法MOLAD。在此基础上,为了解决非平衡数据的分类问题,提出了一种在采样阶段将MOLAD算法和基于Bagging的集成学习结合的算法LADBMOTE。LADBMOTE首先根据MOLAD计算每个少数类样本的K近邻,然后选择所有的K近邻进行采样,生成K个平衡数据集,最后利用基于Bagging的集成学习方法将K个平衡数据集训练得到的分类器集成。在KEEL公开的20个非平衡数据集上,将提出的LADBMOTE算法与当前流行的7个处理非平衡数据的算法对比,实验结果表明LADBMOTE在不同的分类器上的分类性能更好,鲁棒性更强。  相似文献   

11.
实际的分类数据往往是分布不均衡的.传统的分类器大都会倾向多数类而忽略少数类,导致分类性能恶化.针对该问题提出一种基于变分贝叶斯推断最优高斯混合模型(varition Bayesian-optimized optimal Gaussian mixture model, VBoGMM)的自适应不均衡数据综合采样法. VBoGMM可自动衰减到真实的高斯成分数,实现任意数据的最优分布估计;进而基于所获得的分布特性对少数类样本进行自适应综合过采样,并采用Tomek-link对准则对采样数据进行清洗以获得相对均衡的数据集用于后续的分类模型学习.在多个公共不均衡数据集上进行大量的验证和对比实验,结果表明:所提方法能在实现样本均衡化的同时,维持多数类与少数类样本空间分布特性,因而能有效提升传统分类模型在不均衡数据集上的分类性能.  相似文献   

12.
不平衡数据问题对传统的近邻分类器带来了很大的挑战,它的准则函数往往会使测试样本类别偏向于多数类,且参数对数据集有很强的依赖性。基于万有引力的固定半径近邻分类器(GFRNN)算法通过引入万有引力定律的思想,实现了一个针对不平衡数据的无参、高效的分类器,但GFRNN算法仅采用欧氏距离方法来计算半径和候选集。因此,基于GFRNN算法,在算法构造层面上提出了一种多视角学习框架MGFRNN。考虑到距离计算的多样性及所对应候选集的不确定性,在距离的计算中,采用欧式距离、一范数距离和切比雪夫距离三种度量方法,根据三种距离度量方法分别计算候选集半径,并计算候选集中各类样本对测试样本的万有引力大小,从而进行分类。实验结果证明,所提MGFRNN算法在比较算法中具有最高的分类精确度。  相似文献   

13.
为改进SVM对不均衡数据的分类性能,提出一种基于拆分集成的不均衡数据分类算法,该算法对多数类样本依据类别之间的比例通过聚类划分为多个子集,各子集分别与少数类合并成多个训练子集,通过对各训练子集进行学习获得多个分类器,利用WE集成分类器方法对多个分类器进行集成,获得最终分类器,以此改进在不均衡数据下的分类性能.在UCI数据集上的实验结果表明,该算法的有效性,特别是对少数类样本的分类性能.  相似文献   

14.
大多数非均衡数据集的研究集中于纯重构数据集或者纯代价敏感学习,本文针对数据集类分布非均衡和不相等误分类代价往往同时发生这一事实,提出了一种以最小误分类代价为目标的基于混合重取样的代价敏感学习算法。该算法将两种不同类型解决方案有机地融合在一起,先用样本类空间重构的方法使原始数据集的两类数据达到基本均衡,然后再引入代价敏感学习算法进行分类,能提高少数类分类精度,同时有效降低总的误分类代价。实验结果验证了该算法在处理非均衡类问题时比传统算法要优越。  相似文献   

15.
针对现有机器学习算法难以有效提高不均衡在线贯序数据中少类样本分类精度的问题,提出了一种基于主曲线的不均衡在线贯序极限学习机。该方法的核心思路是根据在线贯序数据的分布特性,均衡各类别样本,以减少少类样本合成过程中的盲目性,主要包括离线和在线两个阶段。离线阶段采用主曲线分别建立各类别样本的分布模型,利用少类样本合成过采样算法对少类样本过采样,并根据各样本点到对应主曲线的投影距离分别为其设定相应大小的隶属度,最后根据隶属区间削减多类和少类虚拟样本,进而建立初始模型。在线阶段对贯序到达的少类样本过采样,并根据隶属区间均衡贯序样本,进而动态更新网络权值。通过理论分析证明了所提算法在理论上存在损失信息上界。采用UCI标准数据集和实际澳门气象数据进行仿真实验,结果表明,与现有典型算法相比,该算法对少类样本的预测精度更高,数值稳定性更好。  相似文献   

16.
王中锋  王志海 《计算机学报》2012,35(2):2364-2374
通常基于鉴别式学习策略训练的贝叶斯网络分类器有较高的精度,但在具有冗余边的网络结构之上鉴别式参数学习算法的性能受到一定的限制.为了在实际应用中进一步提高贝叶斯网络分类器的分类精度,该文定量描述了网络结构与真实数据变量分布之间的关系,提出了一种不存在冗余边的森林型贝叶斯网络分类器及其相应的FAN学习算法(Forest-Augmented Naive Bayes Algorithm),FAN算法能够利用对数条件似然函数的偏导数来优化网络结构学习.实验结果表明常用的限制性贝叶斯网络分类器通常存在一些冗余边,其往往会降低鉴别式参数学习算法的性能;森林型贝叶斯网络分类器减少了结构中的冗余边,更加适合于采用鉴别式学习策略训练参数;应用条件对数似然函数偏导数的FAN算法在大多数实验数据集合上提高了分类精度.  相似文献   

17.
针对传统单个分类器在不平衡数据上分类效果有限的问题,基于对抗生成网络(GAN)和集成学习方法,提出一种新的针对二类不平衡数据集的分类方法——对抗生成网络-自适应增强-决策树(GAN-AdaBoost-DT)算法。首先,利用GAN训练得到生成模型,生成模型生成少数类样本,降低数据的不平衡性;其次,将生成的少数类样本代入自适应增强(AdaBoost)模型框架,更改权重,改进AdaBoost模型,提升以决策树(DT)为基分类器的AdaBoost模型的分类性能。使用受测者工作特征曲线下面积(AUC)作为分类评价指标,在信用卡诈骗数据集上的实验分析表明,该算法与合成少数类样本集成学习相比,准确率提高了4.5%,受测者工作特征曲线下面积提高了6.5%;对比改进的合成少数类样本集成学习,准确率提高了4.9%,AUC值提高了5.9%;对比随机欠采样集成学习,准确率提高了4.5%,受测者工作特征曲线下面积提高了5.4%。在UCI和KEEL的其他数据集上的实验结果表明,该算法在不平衡二分类问题上能提高总体的准确率,优化分类器性能。  相似文献   

18.
In the class imbalanced learning scenario, traditional machine learning algorithms focusing on optimizing the overall accuracy tend to achieve poor classification performance especially for the minority class in which we are most interested. To solve this problem, many effective approaches have been proposed. Among them, the bagging ensemble methods with integration of the under-sampling techniques have demonstrated better performance than some other ones including the bagging ensemble methods integrated with the over-sampling techniques, the cost-sensitive methods, etc. Although these under-sampling techniques promote the diversity among the generated base classifiers with the help of random partition or sampling for the majority class, they do not take any measure to ensure the individual classification performance, consequently affecting the achievability of better ensemble performance. On the other hand, evolutionary under-sampling EUS as a novel undersampling technique has been successfully applied in searching for the best majority class subset for training a good-performance nearest neighbor classifier. Inspired by EUS, in this paper, we try to introduce it into the under-sampling bagging framework and propose an EUS based bagging ensemble method EUS-Bag by designing a new fitness function considering three factors to make EUS better suited to the framework. With our fitness function, EUS-Bag could generate a set of accurate and diverse base classifiers. To verify the effectiveness of EUS-Bag, we conduct a series of comparison experiments on 22 two-class imbalanced classification problems. Experimental results measured using recall, geometric mean and AUC all demonstrate its superior performance.  相似文献   

19.
不平衡数据分类是机器学习研究领域中的一个热点问题。针对传统分类算法处理不平衡数据的少数类识别率过低问题,文章提出了一种基于聚类的改进AdaBoost分类算法。算法首先进行基于聚类的欠采样,在多数类样本上进行K均值聚类,之后提取聚类质心,与少数类样本数目一致的聚类质心和所有少数类样本组成新的平衡训练集。为了避免少数类样本数量过少而使训练集过小导致分类精度下降,采用少数过采样技术过采样结合聚类欠采样。然后,借鉴代价敏感学习思想,对AdaBoost算法的基分类器分类误差函数进行改进,赋予不同类别样本非对称错分损失。实验结果表明,算法使模型训练样本具有较高的代表性,在保证总体分类性能的同时提高了少数类的分类精度。  相似文献   

20.
王莉莉  付忠良  陶攀  胡鑫 《计算机应用》2017,37(7):1994-1998
针对不平衡分类中小类样本识别率低问题,提出一种基于主动学习不平衡多分类AdaBoost改进算法。首先,利用主动学习方法通过多次迭代抽样,选取少量的、对分类器最有价值的样本作为训练集;然后,基于不确定性动态间隔的样本选择策略,降低训练集的不平衡性;最后,利用代价敏感方法对多分类AdaBoost算法进行改进,对不同的类别给予不同的错分代价,调整样本权重更新速度,强迫弱分类器"关注"小类样本。在临床经胸超声心动图(TTE)测量数据集上的实验分析表明:与多分类支持向量机(SVM)相比,心脏病总体识别率提升了5.9%,G-mean指标提升了18.2%,瓣膜病(VHD)识别率提升了0.8%,感染性心内膜炎(IE)(小类)识别率提升了12.7%,冠心病(CAD)(小类)识别率提升了79.73%;与SMOTE-Boost相比,总体识别率提升了6.11%,G-mean指标提升了0.64%,VHD识别率提升了11.07%,先心病(CHD)识别率提升了3.69%。在TTE数据集和4个UCI数据集上的实验结果表明,该算法在不平稳多分类时能有效提高小类样本识别率,并且保证其他类别识别率不会大幅度降低,综合提升分类器性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号