首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用热模拟技术研究了X80级抗大变形管线钢焊接粗晶区组织、显微硬度和韧性的变化规律,分析了焊后冷却速度和粗晶区组织、性能之间的关系.结果表明,X80级抗大变形管线钢焊接粗晶区组织类型主要为铁素体和少量珠光体、粒状贝氏体、板条贝氏体和板条马氏体4种类型.焊接粗晶区软化是X80级抗大变形管线钢焊接面临的主要问题.当焊后冷却速度在15~30℃/s之间时,X80级抗大变形管线钢焊接粗晶区的强度、室温以及低温韧性匹配良好,组织以板条贝氏体为主.  相似文献   

2.
X80管线钢是西气东输二线工程的主导钢材,其焊接质量直接决定管线的安运行全.采用热模拟技术研究了X80管线钢焊接热影响区工艺条件、组织和力学性能之间的关系.结果表明X80管线钢焊接粗晶区的组织类型为贝氏体和铁素体,不存在典型的M组织,淬硬性倾向较小.粗晶区的软化现象不太显著.焊接线能量对粗晶区的冲击韧性影响最为显著.当采用8kJ/cm的线能量和60℃的预热温度时,粗晶区的晶粒较细,组织由板条贝氏体和一定量的粒状贝氏体组成,由于粒状贝氏体对板条贝氏体的分割作用,使板条贝氏体的长度较小,方向性差,表现的韧性最优越.因此在X80管线钢的焊接中为使粗晶区获得较高的韧性,应采用较小的线能量和合适的预热温度.  相似文献   

3.
粗晶区是焊接接头的薄弱环节.通过对X80管线钢进行热模拟、金相显微镜和透射电镜分析后表明,粗晶区的组织主要为板条束贝氏体和粒状贝氏体;X80管线钢焊接热影响区粗晶区冲击韧性较差,存在严重脆化,粗晶区脆化是由于晶粒的粗化以及M-A组元数量增多造成的;随着t8/5的增加,粗晶区的冲击韧性和硬度随之降低;峰值温度越高,X80级管线钢的组织越粗大、韧性越低;中间临界区是焊接热影响区中另外一个韧性较薄弱的区域.  相似文献   

4.
《电焊机》2015,(9)
管线钢焊接突出的问题是热影响区晶粒粗化会导致接头韧性下降。利用热模拟技术和超窄间隙焊接方法对X70管线钢进行试验,得到了不同热输入下焊接热影响区粗晶区的组织,并测试了其韧性。结果表明,在室温下,当热输入低于8 k J/cm时,以板条贝氏体和少量针状铁素体组织为主,原奥氏体晶粒尺寸小于48μm,韧性与母材相当;高于8 k J/cm时,随着热输入增加,板条贝氏体和针状铁素体逐渐减少,原奥氏体晶粒逐渐长大,韧性开始急剧下降。分析认为,对于这类C含量低的管线钢,板条贝氏体的形成并不会导致韧性降低,原奥氏体晶粒不断长大才是造成韧性下降的主要原因。采用超窄间隙焊接方法,可以有效缩短高温停留时间,防止原奥氏体晶粒长大,从而避免焊接热影响区粗晶区的韧性下降。  相似文献   

5.
X80管线钢焊接热影响区组织和性能分析   总被引:5,自引:3,他引:2       下载免费PDF全文
采用焊接热模拟技术和金相显微组织分析技术,对首钢研制开发的X80热轧板卷在不同焊接热循环下的组织和力学性能变化规律进行了深入分析.结果表明,粗晶热影响区是X80管线钢焊接热影响区中冲击韧性较差的区域,存在严重脆化.粗晶热影响区脆化是由于晶粒的粗化以及粒状贝氏体、上贝氏体、M-A组元等非平衡中低温转变产物数量增多造成的,且其冲击韧性随着t8/5的增加而降低.细晶热影响区是X80管线钢焊接热影响区的软化区域,软化程度随着焊接热输入的增加而增加.  相似文献   

6.
利用Gleeble热模拟试验机模拟研究了X80钢焊接热影响区粗晶区组织在不同冷却速度下的变化规律,研究了冷却时间、组织和性能之间的关系。结果表明,X80钢焊接热影响区粗晶区组织主要由板条贝氏体和粒状贝氏体组成。随冷却时间t8/5时间增加,板条贝氏体含量逐渐减少,由细长状转变成粗大片状、并趋于平行;粒状贝氏体含量逐渐增加,其间的马氏体M/奥氏体A组元数量增加,间距缩短,面积增大。随冷却时间t8/5时间增加,焊接热影响区粗晶区冲击韧性先增加后减小;当t8/5=7 s时,X80钢焊接热影响区粗晶区组织为少量的粒状贝氏体,且弥散分布于大量板条贝氏体之间,细化板条贝氏体,增加有效晶界,起到细化和强化作用,冲击断口分布着大量的细小韧窝,为明显的韧性断裂。  相似文献   

7.
焊接热循环对X80管线钢粗晶区韧性和组织的影响   总被引:10,自引:2,他引:8       下载免费PDF全文
利用焊接热模拟技术、光学金相、透射电子显微镜和示波冲击韧度试验、断裂韧度试验研究了焊接热循环对X80管线钢粗晶区韧性和组织的影响。试验结果表明,在六种热循环参数下,X80管线钢模拟粗晶区具有不同的显微组织,当焊接热循环参数较小时,以下贝氏体和板条马氏体为主,随着热循环参数的增大,以粒状贝氏体为主,且其中的M—A岛的形态由细短条状转变成大长条状或大块状,分布由晶界转向晶内,同时数量增多,韧性恶化。  相似文献   

8.
通过焊接热模拟试验,模拟不同热输入下Q1100粗晶区的热循环过程。采用示波载荷冲击试验机检测焊接热模拟试样的冲击韧性,结合OM、SEM观察试样的显微组织和断口形貌;采用TEM观察和Lepera腐蚀,研究不同冷速下M-A组元数量、形貌和分布情况,分析不同热输入对粗晶区显微组织特征与冲击韧性的影响规律。研究结果表明,随焊接热输入的增大,粗晶区的组织由板条马氏体转变为板条马氏体+板条贝氏体的混合组织,最终转变为粗大的粒状贝氏体,原始奥氏体晶粒尺寸逐渐增大;-20℃下的冲击韧性呈现先增大后减小的趋势,焊接热输入为14.95 k J/cm时,相互交割的马贝混合组织使Q1100的粗晶区具有最优的韧性。M-A组元的形成和原奥晶粒尺寸的增大是大热输入下造成韧性下降的主要原因。  相似文献   

9.
X70管线钢在役焊接局部脆化区的组织及精细结构   总被引:2,自引:0,他引:2  
采用焊接热模拟试验研究了X70管线钢在役焊接粗晶区和临界粗晶区的显微组织及其精细结构,并和常规焊接进行了对比.结果表明,X70管线钢在役焊接粗晶区和临界粗晶区的组织在类别上与常规焊接相差不大,主要都是粒状贝氏体和贝氏体铁素体,不同的只是数量的多少和尺寸的大小.透射电镜下,在役焊接和常规焊接的粗晶区与临界粗晶区的主要形貌都是铁素体板条和分布在板条之间或板条基体上的岛状物,铁素体板条的亚结构都是高密度位错.在役焊接粗晶区和临界粗晶区的铁素体板条宽度都比常规焊接的要小,位错密度都比常规焊接的要高.  相似文献   

10.
采用Gleeble-3800热模拟机对深海用X70厚壁管线钢进行热模拟试验,研究在不同焊接线能量下粗晶热影响区的组织转变及性能变化。结果表明:不同焊接线能量下焊接粗晶热影响区组织主要是板条状贝氏体和粒状贝氏体。冷却时间t_(8/5)在12~50s内,适量的粒状贝氏体以不同位向分割板条贝氏体,M-A组元呈块状弥散分布,粗晶区的韧性最好。t_(8/5)12s时,组织由粗大的板条束贝氏体和条状M-A岛组成;t_(8/5)50 s时,粒状贝氏体和多边形铁素体增多。这些组织导致冲击韧性降低。  相似文献   

11.
利用Gleeble-3500热模拟试验机模拟粗晶热影响区的焊接热循环,研究了热输入对欧标低合金结构钢粗晶热影响区晶粒长大、硬度及韧性和组织的影响。结果表明,随着峰值加热温度的提高和高温停留时间的延长,奥氏体晶粒将发生不同程度的长大,粗晶热影响区的最高硬度也逐渐提高;同时随着t_(8/5)的延长,粗晶热影响区的组织将由少量低碳马氏体、针状铁素体以及粒状贝氏体和大量块状铁素体组织,逐渐转化为大量侧板条贝氏体、粒状贝氏体以及粗大长条状M-A组元,甚至出现一定数量的上贝氏体,使得粗晶热影响区的低温冲击韧度急剧下降,由低温韧性断裂转化为低温脆性断裂。  相似文献   

12.
利用Gleeble 3500热模拟试验机,建立了X80管线钢焊接热影响区的连续冷却转变曲线(SH-CCT曲线),采用金相分析、显微硬度测试和夏比冲击试验,分析了X80管线钢焊接粗晶区在不同冷却速度下的组织转变和性能变化规律.结果表明:当冷却速度低于0.3℃/s时,粗晶区组织为多边形铁素体和少量珠光体或粒状贝氏体的混合物,具有较好的冲击性能,但硬度较低;当冷却速度为0.3~2℃/s时,粗晶区中的粒状贝氏体和MA岛状组织增多,且晶界模糊,其冲击性能较差;当冷却速度在2~30℃/s时,热影响区组织以粒状贝氏体为主,MA岛状组织的形状和分布均匀,具有优良的冲击性能;当冷却速度大于30℃/s时,随着冷却速度的增加,粒状贝氏体的含量逐渐减小,而贝氏体铁素体的含量逐渐增多,硬度升高,冲击性能下降.  相似文献   

13.
利用Gleeble-3500热模拟机、组织分析、力学测试、扫描电镜等方法研究了高温停留时间对X80管线钢焊缝热影响粗晶区(Coarse-grained heat-affected zone,CGHAZ)组织性能的影响。研究结果表明,X80管线钢热影响区粗晶区的组织主要由粒状贝氏体、贝氏体铁素体以及M/A组元组成。随着高温停留时间的增加,碳氮原子扩散速度增加,成分更加趋于均匀化,粒状贝氏体和贝氏体铁素体交错分布程度增加,M/A岛状组织以及碳氮化合物分布更加弥散,粗晶区韧性值逐渐增加,当高温停留时间为18 s时,粗晶区冲击性能最佳,-10 ℃的冲击吸收能量为288 J,硬度值适中,为270 HV0.3。当高温停留时间大于18 s时,粗晶区冲击吸收能量有所下降,硬度值增大。高温停留时间为8 s时,粗晶区韧性最低,冲击吸收能量仅为49 J,硬度值最高,为283 HV0.3。  相似文献   

14.
利用Gleeble-1500模拟实际焊接条件下三丝纵列焊接热循环过程,通过冲击试验、扫描电镜(SEM)、透射电镜(TEM)以及电子背散射衍射(EBSD)对微合金X80管线钢焊接热影响粗晶区(CGHAZ)的显微组织、马/奥组元(M/A)分布及形态、冲击韧性和室温组织粗化程度进行了研究。结果表明,随奥氏体稳定性元素含量的降低,CGHAZ平均晶粒尺寸无明显变化,但晶粒尺寸离散度增加;原奥氏体向贝氏体转变温度升高,晶界渗碳体含量增加,且粒状贝氏体的晶粒取向选择过于单一,大角度晶界(15°)密度显著降低;M/A组元由块状向长条状转变且数量明显减少。上述原因使微合金X80管线钢焊后热影响粗晶区冲击韧性离散性增加。  相似文献   

15.
采用富Ar气体保护焊方法,使用φ1.6mm的MK.GHS80实芯气保焊丝对板厚为20 mm的HG785D钢进行对接焊,对焊接接头显微组织进行了观察,并对接头拉伸、弯曲、冲击等力学性能进行了检测,研究了热输入对焊接接头组织和性能的影响。结果表明,焊缝组织主要为针状铁素体+少量先共析铁素体,随着热输入的增加,焊缝中先共析铁素体含量逐渐增加,侧板条铁素体和粒状贝氏体组织减少;当热输入较低时粗晶区组织为板条贝氏体,随着热输入的增加,粗晶区组织逐渐由板条贝氏体转变为板条贝氏体+粒状贝氏体,当线能量达到32.2kJ/cm时几乎全部为粒状贝氏体;随着热输入增加,接头抗拉强度逐渐降低,焊缝冲击韧性先提高后降低,但影响有限,热影响区冲击韧性则逐渐降低,当热输入达到32.2 kJ/cm时接头性能恶化,焊接接头在线能量为23.8 kJ/cm时能获得优良的强韧性匹配。  相似文献   

16.
焊接热输入对X100管线钢粗晶区组织及性能的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
采用热模拟技术、显微分析方法和力学性能测试等手段,对X100管线钢在不同焊接热输入下粗晶区的组织及性能的变化规律进行了研究.结果表明,随着焊接热输入的增加,X100管线钢的强韧性降低.当热输入为10kJ/cm左右时,焊接粗晶热影响区的显微组织以贝氏体铁素体和粒状贝氏体为主,这种组织赋予材料以最佳的强韧性水平;当热输入为20kJ/cm左右时,焊接粗晶热影响区的显微组织以粒状贝氏体和准多边形铁素体为主,材料有较好的强韧配合;而当热输入大于30kJ/cm时,由于多边形铁素体增多,材料的强韧性降低.因此可将10~20kJ/cm作为X100管线钢的推荐热输入.  相似文献   

17.
X80管线钢的焊接冷裂纹试验   总被引:2,自引:0,他引:2  
吴冰  陈辉 《电焊机》2008,38(10)
为了实现焊接时焊缝金属的纯净化与晶粒细化,减小焊缝的裂纹率.通过碳当量计算公式,判断X80管线钢的淬硬倾向;通过小铁研试验计算了在25℃、50 ℃、100 ℃和150 ℃的预热温度下X80管线钢的焊接裂纹率;利用金相方法分析了裂纹的性质和不同预热温度时焊接接头熔合区的金相组织.结果表明:X80管线钢淬硬倾向较小,焊后一般不需要热处理,小铁研试验出现的裂纹为冷裂纹;随着预热温度的升高,裂纹率显著降低;焊接接头熔合区显微组织为粒状贝氏体 板条贝氏体 铁索体,随着预热温度的升高,线能量的降低,晶粒粗化现象得到缓解,粒状贝氏体组织增加,降低了冷裂纹敏感性.  相似文献   

18.
《电焊机》2019,(10)
以低合金高强度船板钢为研究对象,分析焊接热输入对粗晶热影响区(CGHAZ)组织及力学性能的影响。结果表明,当热输入较小时,粗晶热影响区组织为板条马氏体、板条贝氏体和少量针状铁素体,硬度和冲击韧性都较高;当热输入为100 kJ/cm时,组织为板条贝氏体、粒状贝氏体和大量由原奥氏体晶界向晶内生长的铁素体;随着热输入的增加,板条贝氏体逐渐减少,粒状贝氏体增加,且组织不断粗化,硬度和冲击韧性逐渐降低;当热输入为250 kJ/cm时,组织主要是粒状贝氏体、由晶界向晶内生长的铁素体和晶界铁素体,此时的CGHAZ组织与热输入较小时相比发生了明显的粗化,冲击韧性进一步降低。  相似文献   

19.
杨津瑜 《热加工工艺》2014,(13):164-166
采用埋弧焊焊接X70级管线钢。采用OLYCIA m3软件对热影响区的晶粒度进行评级,采用OLYMPUS-PMG3光学显微镜对热影响区进行显微组织观察。结果表明,经过焊接热作用后,母材中原始的针状铁素体组织和少量的珠光体组织转变为粗大的粒状贝氏体组织。X70级管线钢为细晶粒钢,受焊接高温热作用后,其晶粒具有长大倾向。焊接过程中,热输入越高,晶粒长大倾向越严重。焊接热输入为30.6 kJ/cm时,其过热区粒状贝氏体组织的晶粒尺寸为热输入19.04 kJ/cm条件下粒状贝氏体晶粒尺寸的1.2倍。  相似文献   

20.
焊接热循环对X120管线钢组织和性能的影响   总被引:4,自引:2,他引:2  
采用热模拟试验机,研究了一次及二次焊接热循环对X120管线钢的组织和性能的影响.结果表明:在一次焊接热循环时,X120管线钢具有良好的可焊性,当线能量为40kJ/cm时,焊接粗晶区仍保持高的冲击韧性和硬度.在双面焊时,峰值温度为1200℃的二次循环后,热影响区组织主要由板条马氏体和粒状贝氏体组成,因其奥氏体晶粒相对细小,从而具有良好的综合力学性能.当二次热循环峰值温度在奥氏体-铁素体两相区(800℃)和略高于两相区(1000℃)时,焊接热影响区表现为局部脆化.当峰值温度为800℃时,脆化原因是在晶界形成网状组织;而峰值温度为1000℃时,脆化原因是冷却时获得含有粗大M/A岛状组织的粒状贝氏体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号