首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
UV-curable acrylic pressure-sensitive adhesives (acrylic PSAs) have many applications in industry. As the Si-wafers become thinner, the acrylic PSAs for MCP need to show proper adhesion and leave little residue on the Si-wafer after UV irradiation when released from the dicing tapes. Strong adhesion is required in the dicing process to hold the Si-wafer before UV irradiation. On the other hand, weak adhesion strength is required after UV irradiation to prevent damage to the Si-wafers during the pick-up process. This study employed semi-interpenetrating polymer network-structured dicing of acrylic PSAs in the Si-wafer manufacture process. The binder PSAs contained 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AA). The adhesion performance of the peel strength on a Si-wafer was examined as a function of the UV dose. The results showed that the abovementioned two requirements were achieved using semi-IPN dicing acrylic PSAs using a hexafunctional acrylate monomer and a UV-curing system. FE-SEM and XPS revealed little residue on the wafer after removing the tape. This paper suggests the optimal conditions for the curing agent, the additional hexafunctional monomer, photoinitiator and the coating thickness.  相似文献   

2.
Acrylic copolymers are prepared by radical polymerization of 2‐ethylhexyl acrylate, ethyl acrylate, and acrylic acid followed by crosslinking to manufacture the pressure‐sensitive adhesives (PSAs) for silicon wafer protection. Both higher reliability and wettability are required for the protective acrylic PSAs in the semiconductor processing applications. The siloxane linkages are introduced in the acrylic PSAs via crosslinking with siloxane‐containing crosslinking agent to modify the thermal and wetting properties of PSAs efficiently. The more efficient formation of crosslinked network structure was achieved with higher content of tetra‐functional crosslinking agent, and the surface energy of PSAs decreased significantly with increasing the content of siloxane linkage resulting in the improved areal wetting rate. The thermal stability of PSAs was also improved significantly by incorporation of siloxane linkages. The adhesion properties such as peel strength and probe tack of acrylic PSAs decreased significantly by increasing the content of either crosslinking agent or siloxane linkage. The acrylic PSA with siloxane group showed both satisfactory wetting and clean debonding properties for the optimal protection of thin silicon wafers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Acrylic pressure–sensitive adhesives (PSAs) with 2-phenoxy ethyl acrylate (PEA) were polymerized using UV-curing technology. This study examined the effects of PEA content and UV dose. The photo-polymerization behavior of the pre-polymer was examined by viscosity measurements, real-time Fourier transform infrared spectroscopy, and photo-differential scanning calorimetry. The curing behaviors of the acrylic PSAs were investigated by shrinkage test, a modular advanced rheometer system, and gel content. differential scanning calorimetry and Advanced Rheometric Expansion System were used to characterize the acrylic PSAs. Adhesion performances were measured by probe tack, peel strength, and shear adhesion failure temperature. The optical properties of acrylic PSAs were examined by UV–visible spectroscopy and prism coupler. The PEA content had a larger effect on improving the optical properties, than did the UV dose. The transmittances of the acrylic PSAs with <75% PEA were >95%. The refractive indices of the acrylic PSAs increased with increasing PEA content, due to its high refractive index, >1.5, which affected the overall refractive indices, particularly in the visible region.  相似文献   

4.
Acrylic pressure–sensitive adhesives (PSAs) were synthesized by solution polymerization using zirconium carboxyethyl acrylate (ZrCEA) with methyl aziridine derivatives (MAZ) as a curing agent. The acrylic PSAs were characterized by Fourier transform-infrared spectroscopy and gel contents. The viscoelastic properties of the acrylic PSAs were determined using an advanced rheometric expansion system. The adhesion performance of the acrylic PSAs was determined by measuring the probe tack, peel strength, shear adhesion failure temperature, and holding power. The optical properties of the acrylic PSAs were evaluated by the transmittance and refractive index. The results show that the adhesion performance and optical properties of the acrylic PSAs are influenced by the ZrCEA and MAZ content.  相似文献   

5.
The development of adhesive tapes that can be applied at high temperature is a major challenge for pressure-sensitive adhesives (PSAs). To date, the heat resistance of PSAs has not been investigated in sufficient details. In this study, based on the relationship between curing structures and properties, a series of acrylic PSAs with excellent heat resistance were prepared. Commercial zirconium acetylacetonate (ZrACA), desmodur L75 (L75), and N,N,N′,N′-tetrakis(2,3-epoxypropyl)-m-xylene-α,α′-diamine (GA240) were employed as heat-curing agents. Trimethylolpropane triacrylate (TMPTA) was used as ultraviolet (UV)-curing agent to form semi-interpenetration polymer network structures after UV exposure. The influences of different curing agents on the thermal stability, adhesion performance, gel fraction, and viscoelastic of PSAs were explored. The results showed that the PSAs cured by L75, GA240, and TMPTA exhibited excellent heat resistance. Especially, when the content of L75 was 1.0 wt %, the PSAs could be peeled off substrate without residues on substrate surface after treatment at 170 °C for 4 h, while the nonmodified acrylic PSAs possessed residues after treatment from 110 °C. The cured PSAs adhesive performance was evaluated showing maximum 180° peel strength of 16.7 N/25 mm comparable to current PSAs. These resulting PSAs showed high heat resistance and they are suitable for a broad range of special fields. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47310.  相似文献   

6.
A biomass‐based isosorbide acrylate (ISA) was synthesized in a one‐pot reaction at low temperature with a quite slow dropwise technique using a syringe pump. Using the ISA monomer, UV‐cured transparent acrylic pressure‐sensitive adhesives (PSAs) composed of semi‐interpenetrating networks were prepared. The effect of ISA on the adhesion performance of the resulting acrylic PSAs was investigated by changing the ISA content, while fixing the mole ratio between 2‐ethylhexyl acrylate and 2‐hydroxyethyl acrylate in the PSAs. The prepared acrylic PSAs, with ISA content ranging from 3.2 to 14.3 mol%, were evaluated in terms of 180° peel strength, probe tack, static shear testing and optical properties. Increasing the ISA content in the acrylic PSAs improved the adhesion properties, such as 180° peel strength (0.25–0.32 N/25 mm), shear holding power (0.086–0.023 mm) and probe tack (1.21–2.26 N). Dynamic mechanical analysis indicated that ISA is a good candidate monomer, playing the role of adhesion promoter and hard monomer in the acrylic PSAs. © 2017 Society of Chemical Industry  相似文献   

7.
To improve the thermal stability of general acrylic pressure-sensitive adhesives (PSAs), polydimethylsiloxane (PDMS) was used and UV curing was employed. Silicone urethane methacrylate (SiUMA) was synthesized and introduced into acrylic PSAs for a semi-interpenetrating polymer network structure. The structure of the SiUMA was investigated through C NMR, H NMR, and FT-IR. The kinetics and behaviors of SiUMA (S1) were found by adding photoinitiators (PI) of 0.5, 1.0, 5.0, and 10?phr in a binder, which were examined using the photo-DSC (pDSC). After setting PI as 5.0?phr in a binder and UV intensity as 1000?mJ/cm2, the SiUMA, which was prepared by a radical polymerization, was added to acrylic PSA to 20, 40, 60, and 80% composition, and its kinetics and behaviors were analyzed by pDSC. Finally, the peel strength was checked to evaluate adhesion performance of the acrylic PSAs. The reaction rate was increased with increasing amounts of S1 and PI. Peel strength was dropped sharply with increasing crosslinking density.  相似文献   

8.
Since their introduction half a century ago, acrylic pressure-sensitive adhesives have been successfully applied in many fields. In the last fifty years or so, acrylic pressure-sensitive adhesives (PSAs) have made tremendous strides from what was virtually a black art to what is now a sophisticated science. So much so that larger manufacturers of pressure-sensitive adhesives and even their polymer suppliers now use very expensive equipment to study pressure-sensitive adhesive behavior. The three properties which are useful in characterizing the nature of pressure-sensitive adhesives are tack, peel (adhesion) and shear (cohesion). The first measures the adhesive's ability to adhere quickly, the second its ability to resist removal by peeling, and the third its ability to hold in position when shear forces are exerted. The performances of pressure-sensitive adhesives, such as tack, peel and shear, based on polyacrylates synthesized through co-polymerization of acrylate monomers and formulated in organic solvents mixtures are, to a large degree, determined by the molecular weight of acrylic copolymer, polymerization method and especially by the type and quantity of the crosslinking agent added to the PSA. Newly developed solvent-borne PSAs are used in protective foils, removable and repositionable self-adhesive products, water-soluble PSAs and water-dispersible self-adhesive products, photoreactive UV-crosslinkable self-adhesive tapes, and dual-crosslinkable PSAs for self-adhesive tapes with post-crosslinking potential characterized by enhanced cohesion at higher temperatures. The mentioned water-soluble PSAs, water-dispersible self-adhesive products and photoreactive UV-crosslinkable self-adhesives are synthesized in organic solvents as solvent-borne acrylic PSAs.  相似文献   

9.
双组分水性丙烯酸酯复膜胶的研究   总被引:2,自引:1,他引:1  
王齐  傅和青 《粘接》2009,30(2):38-42
以丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)、丙烯酸(AA)等为主要原料合成了丙烯酸酯乳液,加入固化剂,得到双组分水性丙烯酸酯复膜胶。研究了丙烯酸、固化剂含量,软硬单体比例以及交联剂和不同乳化剂对产品性能的影响。实验结果表明,当丙烯酸占单体总量的2%,固化剂为6%,软/硬单体质量比为1.36,固化时间为4h时,所得的双组分水性丙烯酸酯复膜胶的性能较佳。  相似文献   

10.
Two different monosaccharide acrylate monomers were designed and synthesized from glucose and galactose, and were then used to prepare transparent acrylic pressure sensitive adhesives (PSAs) comprised of semi-interpenetrated structured polymer networks. The effects of the monosaccharide architecture in the acrylate monomers on the adhesive performance of the acrylic PSAs were investigated. Prepared UV-curable acrylic PSA syrups were characterized and the optical properties of the acrylic PSAs were also examined. All of the acrylic PSAs exhibited high transparency in the visible wavelength region. With increasing monosaccharide acrylate concentration in the acrylic PSAs, adhesive performances such as the peel strength, cohesion strength, and probe tack were increased. However, there was no difference in their adhesive performances regardless of the different chemical structures of monosaccharide acrylate monomers.  相似文献   

11.
Water‐reducible acrylate copolymer is obtained from a free‐radical copolymerization of n‐butyl acrylate, acrylic acid, and methacrylic acid. Self‐emulsified aqueous‐based polyurethane (PU) anionomer is prepared by the conventional method. The latent curing agents (di‐ and triaziridinyl compounds, HDDA‐AZ and TMPTA‐AZ) are synthesized from the reaction of aziridine with hexandiol diacrylate and trimethylolpropane triacrylate, respectively. These two polymers and the latent curing agent are miscible in each other and become a single component and self‐curable polymer dispersion. The carboxyl ions of polymers not only stabilize the aqueous polymer dispersions but also serve the curing site toward latent curing agent in the drying process. These two polymers blend with a curing agent, which results in new polymer hybrid formation. These polymer hybrids have the improvements on performance properties and the cost/performance benefits. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3578–3587, 2003  相似文献   

12.
采用溶液聚合制备了溶剂型聚丙烯酸酯类压敏胶.讨论了改性单体的种类及用量、链转移剂的用量、引发剂的加入方式、聚合反应温度、胶液黏度和烘胶温度对压敏胶粘接性能的影响。实验表明,丙烯酸可以全面提高压敏胶的粘接性能,引发剂的加入方式能够有效调节聚合产物分子质量,链转移剂可以维持聚合反应的稳定性,适当的胶液黏度和烘胶温度将有利于提高压敏胶的粘接性能。  相似文献   

13.
Optically clear acrylic pressure-sensitive adhesives (PSAs) with different co-monomers were synthesized. This study employed metal chelate aluminum acetylacetonate and zirconium acetylacetonate as curing agents. The optical properties of the acrylic PSAs were examined by UV–visible spectroscopy and a prism coupler. In addition, the adhesion performance was obtained by assessing the peel strength, the tack, and the shear adhesion failure temperature. The decrease in the adhesion performance may be related to a higher crosslinking density, which also resulted in a higher gel content.  相似文献   

14.
Acrylic pressure-sensitive adhesives (PSAs) need to show proper adhesion and improved wettability on the silicon wafer as the wafer becomes thinner. The acrylic copolymers were synthesized by solution radical polymerization of 2-ethylhexyl acrylate, ethyl acrylate, and acrylic acid with AIBN as an initiator. Adhesion performance and wettability of acrylic PSAs were studied depending on the content of lauryl side chains and the degree of crosslinking. The introduction of lauryl side chain was characterized by Fourier transform infrared spectroscopy. The adhesion performance of acrylic PSAs having lauryl side chain was investigated using contact angle, wettability, probe tack, peel strength, and cohesiveness tests. The wettability of acrylic PSAs was improved significantly with increasing the content of lauryl side chain.  相似文献   

15.
The article attempted to prepare special acrylic adhesives with preferable adhesion property and better thermal stability by introducing a fluorinated monomer. The FT-IR result showed that fluorinated monomers and acrylic monomers participated in copolymerization successfully. Furthermore, fluorinated groups performed good compatibility with acrylic resins, based on differential scanning calorimetry curve. According to the TG test under different heating rates, the activation energy of PSAs containing different content of fluorinated monomers was calculated to evaluate the effect of hexafluorobutyl acrylate on heat resistance of PSAs. Then, the findings of contact angle test revealed that the fluorinated PSAs also had rather lower surface energy than ordinary PSAs. Finally, the results of peel strength measurements indicated that the fluorinated PSAs demonstrated excellent adhesion property on various materials, especially low surface energy substrates.  相似文献   

16.
The synthesis and characterization of solventless acrylic UV crosslinkable pressure sensitive adhesives are presented. Different prepolymers were synthesized using bulk polymerization procedure. The reaction mixture consisted of acrylic monomers (2-ethylhexyl acrylate, acrylic acid and t-butyl acrylate), azobisisobutyronitrile initiator, chain transfer agent n-dodecylmercaptan and unsaturated UV photoinitiator 4-acryloyloxybezophenone, which was copolymerized into polymer backbone. Different formulations were tested and the prepolymer was characterized by viscosity measurements and final monomer conversions. The prepolymers were coated onto PET foil and crosslinked by application of UV light source. Peel adhesion at 180° on glass plate was measured. Gel phase was determined using the Soxhlet extraction and copolymer glass transition temperatures (Tg) were analyzed by differential scanning calorimetry (DSC). Results showed that the final monomer conversions in highly exothermic bulk polymerization reached a level between 75% and 90%. Prepolymer viscosity was highly influenced by change in polymer molecular weight and by addition of acrylic acid as a comonomer. On the other hand, the viscosity remained at the low level when t-butyl acrylate was used. The amount of gel phase for all adhesives was above 60 wt.%. Peel strength measurements showed decrease in peel strength with decreasing polymer molecular weight and increase of peel, when acrylic acid was used as a comonomer. All adhesive coatings with t-butyl acrylate comonomer showed cohesive failure.  相似文献   

17.
The use of pressure sensitive adhesives (PSAs) is becoming increasingly popular in many industrial fields. In the automobile industry the main reasons for using PSAs are that they reduce the overall weight of the vehicles and because they are easy to use. However, in the case of acrylic PSAs, the non-crosslinked linear chains results in low thermal stability. In this study, a fluorinated acrylic pressure sensitive adhesive was synthesized under UV irradiation and crosslinking was applied to the linear chain of acrylic PSAs to improve the thermal stability. The adhesion performance was evaluated by analyzing the peel strength, probe tack and shear adhesion failure temperature (SAFT) as a function of the type of crosslinking system. In particular, the peel strength and probe tack were measured at 25, 50 and 80°C. The viscoelastic properties, which were measured using an advanced rheometric expansion system (ARES), revealed a proper balance between the thermal stability and adhesion performance.  相似文献   

18.
Pressure‐sensitive adhesives (PSAs) were produced with latexes synthesized via starved semibatch emulsion polymerization processes with butyl acrylate, three different kinds of hard monomers [styrene (St), methyl methacrylate, and 2‐phenoxy ethyl methacrylate (SR340)], acrylic acid, and 2‐hydroxy ethyl acrylate. The management of both the copolymer composition and the polymerization process allowed us to control the behavior of the PSAs. For the acrylate latexes, the types of hard monomers and their contents, the concentration of buffer [bicarbonate (NaHCO3)], and three kinds of semibatch processes were manipulated to modify the polymer properties. The performance of the PSA films cast from these latexes was evaluated by the peel strength. The results show that the PSA prepared with St exhibited the highest peel strength among the three hard monomers, and the latex synthesized by SR340 showed the largest gel content compared with the other two hard monomers. With increasing buffer, the latex particle size increased, and the peel strength initially increased to a maximum and then decreased. Nevertheless, the stability of the latexes decreased with increasing buffer concentration. In addition, the effects of the three kinds of semibatch processes on the peel strength of the PSA were also evaluated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40095.  相似文献   

19.
An ambient curable isocyanate functional acrylic latex was synthesized by incorporating dimethyl meta-isopropenyl benzyl isocyanate (TMI®), an isocyanate monomer, into styrene/n-butyl acrylate copolymer. An artificial latex of amino-terminated telechelic polybutadiene was prepared and blended with the acrylic latex as a curing agent. The isocyanate content in the blended latex was determined by titration and FTIR measurements. The latex blend properties, in terms of particle size and latex viscosity, and the latex film properties, in terms of stress–strain behavior and solvent swelling behavior, showed no significant change after 30 days' storage of the latex blend at 50°C. The good storage stability was attributed to the stable nature of the latex blend in which there was little chance for the isocyanate-containing particles to come into contact with the curing agent particles, thus preventing premature contact of the acrylic chains with the telechelic chains. The reactivity of different functional groups in the telechelic polymer was studied; the amino group was found to be the most reactive toward the TMI. In addition, a shorter chain telechelic crosslinker was found to result in a higher degree of crosslinking, but this was more intraparticle than interparticle in nature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 965–975, 1998  相似文献   

20.
It has been previously shown that blends of a homopolymer or a copolymer of an N-vinyl lactam with an acrylate or a related copolymer containing a small proportion of acidic groups exhibit macroscale compatibility and a phase separated microstructure. This paper presents an application of this two-phase polymer system for the preparation of melt processable acrylic pressure-sensitive adhesives (PSA). 2-Ethylhexyl acrylate-acrylic acid copolymers, having molecular weights in the range of 50 000 to 115 000 were prepared by free-radical solution polymerization. These copolymers were tacky but possessed insufficient cohesive strength at ambient temperatures to be useful as PSAs. Blending such acrylate copolymers, having some acidic functionality, with minor proportions of a glassy homopolymer or a copolymer of an N-vinyl lactam resulted in materials having a balance of cohesive and adhesive characteristics required of a good PSA. Due to low molecular weights of the components of the polymer blend acrylic PSAs, they are amenable to hot melt processing. Some of the parameters affecting the pressure-sensitive adhesive properties of the polymer blend are: (a) fraction of the glassy polymer in the blend, (b) molecular weights of the polymeric components, (c) acidic functionality of the low molecular weight acrylate copolymer, and (d) N-vinyl lactam functionality of the glassy polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号