首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
超超临界百万千瓦汽轮机主调阀流场非稳态数值研究   总被引:1,自引:0,他引:1  
采用计算流体力学商用Fluent软件,对某百万千瓦超超临界汽轮机主调阀系统(主汽阀和调节汽阀组成的进汽系统)正常运行时的蒸汽稳态流场和快速关闭时的非稳态流场进行了全三维数值计算及分析.结果表明:稳定工作状态下,阀门全开时的阀组总压损失约为进口总压的1.23%,其中调节汽阀损失占总损失的57.52%;主汽阀、调节汽阀都为快开特性的阀,它们的相对升程大于30%时流量基本不可调.采用Fluent中的动网格技术,计算分析了调节汽阀从全开到快速关闭的非稳态过程中蒸汽的流动特性,并给出了调节汽阀快速关闭时的行程、流量及阀后压力与关闭时间的动态曲线.  相似文献   

2.
国内某650MW核电汽轮机现场进行非核蒸汽冲转时,发现主汽阀门关闭不到位,卡涩在50%开度状态无法继续关闭,阀门解体检查发现阀碟脱落,阀碟与摇臂连接螺柱齐根断裂。针对该问题,通过复核主汽阀结构设计、有限元应力分析、材质及断口分析、油动机设计,确定油动机缓冲间隙过大,使得阀门关闭时瞬间线速度过快,导致冲击力过大,是阀碟螺杆根部断裂的主要原因。  相似文献   

3.
朱丹书 《汽轮机技术》1996,38(4):221-228,235
介绍核电阀门动态分析的目的、计算原理与方法。讨论310MW核电汽轮机摇板式主汽阀、调节阀与蝶阀(再热主汽阀与调节阀)的动态性能,最后对摇板式主汽阀动态应力过大情况作了分析并提出了改进措施。  相似文献   

4.
汽轮机主汽阀设计要求具有很高的关闭速度,但高的关闭速度可能会造成阀碟和网座等关键部件撞击损坏,因此有必要对这一阀门关闭过程中部件动强度进行分析和研究.本文提出应用有限元应力分析方法,对关闭过程中阀碟和阀座的碰撞分别采用了弹性-刚性碰撞和弹性-弹性碰撞接触两种计算模型进行计算.并分析和研究了关闭速度和接触均匀度对计算结果的影响,总结出该分析计算方法用于工程设计可以得到比较符合实际情况的结果.  相似文献   

5.
采用非结构化四面体网格,对某600MW超超临界汽轮机组高压主汽调节联合阀的额定工况进行了数值模拟.针对3种不同结构的模型分别进行了计算,分析研究了阀门内部流场的流动特性,以及在主汽阀内加置挡板和滤网对内部流场和阀门损失的影响.  相似文献   

6.
摇板式主汽阀挠性阀座应力分析朱丹书1前言核电饱和汽轮机的主汽间与火电机组的再热主汽阀,由于蒸汽容积流量大,需要大尺寸的阀门,西屋及其它一些国外制造厂采用了摇板式阀。其结构与一般摇板式邀止间相似,但为反向布置,阀瓣关闭方向与主汽流相一致。阀座垂直于汽流...  相似文献   

7.
本文介绍阀门动态分析目的、计算原理与方法。讨论310MW核电汽轮机摇板式主汽阀、调节阀与蝶阀的动态性能,最后对摇板式主汽阀动态应力过大情况作了分析,并提出了改进措施。  相似文献   

8.
电站阀门关闭超时可能导致汽轮机在停机或甩负荷时超速,是影响机组安全的重要问题。许多电厂在做主汽阀、调节阀和抽汽逆止阀的关闭时间测试试验的过程中,都发现了本厂存在不同程度上的阀门关闭超时问题。从机械和热工两个方面对主汽阀、调节阀和抽汽逆止阀的关闭超时问题进行了分析,并提出了可行的解决方案,为各电厂解决超速隐患问题提供借鉴和参考。  相似文献   

9.
以某1000MW核电汽轮机中调阀为研究对象,利用FLUENT软件,采用滑移网格技术对其关闭过程中的动态特性进行三维非定常数值模拟。计算结果表明:中调阀关闭过程中,起初流场分布较为均匀,随着开度的减小,流场开始扰动剧烈,并出现涡流,速度分布也越来越不均匀。同时,压损、流阻系数和气动力矩随阀门开度的减小逐渐升高,而流量系数随阀门开度的减小逐渐降低。  相似文献   

10.
基于动网格与UDF技术的阀门流场数值模拟   总被引:7,自引:0,他引:7  
刘华坪  陈浮  马波 《汽轮机技术》2008,50(2):106-108
基于FLUENT软件提供的计算方法和物理模型,利用动网格及UDF(用户自定义函数)技术,对管路系统常见的4种阀门流动进行了动态数值模拟.该数值模拟方法打破了以往静态研究的局限,更真实地模拟了阀门的开关动态过程中的流动状态和阀体受力情况.动态仿真结果表明:随着阀门开度减小,流场变得复杂,出现复杂涡系,损失增加,同时阀门受力变化较大,会导致冲击与振动,对阀体工作精度与结构强度都非常不利,而且阀门开启过程与关闭过程并非简单反过程,尤其对于球阀,启闭过程中其流场特性与受力特点差别很大.  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

17.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

18.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号