首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of zirconia and yttrium oxide addition on microstructure, bulk density, microhardness, flexural strength, and wear resistance of high alumina ceramics (>97 wt% Al2O3, MSA ceramics) composed of MgO–SiO2–Al2O3 system have been investigated. The results show that the addition of zirconia makes the mechanical properties and wear properties of ceramics composed of MgO–SiO2–Al2O3–ZrO2 (MSAZ ceramics) system have been greatly improved compared with MSA ceramics. In addition, the ceramics composed of MgO–SiO2–Al2O3–ZrO2–Y2O3 (MSAZY ceramics) system have better mechanical properties and wear properties than MSAZ ceramics. With the contents of zirconia and yttrium oxide increase, the bulk density, microhardness, and flexural strength of MSAZ and MSAZY ceramics increased at first and then decreased. However, the wear rate shows the opposite. When 0.4 wt% ZrO2 and 0.6 wt% Y2O3 were added to the matrix, the wear rate of MSAZY ceramics reached a minimum of 0.042%, and the wear resistance was improved by about 73.8% compared with MSA ceramics with a wear rate of 0.16%. In addition, the optimum additions of zirconia and yttria are 0.4% and 0.6%, respectively.  相似文献   

2.
Porous Al2O3-based ceramics with improved mechanical strength and different pore size were fabricated using Al2O3 and SiO2 poly-hollow microspheres (PHMs) as raw materials by selective laser sintering (SLS). The effects of different contents of SiO2 PHMs on phase compositions, microstructures, mechanical properties and pore size distribution of the prepared ceramics were investigated. It is found that moderate content of SiO2 PHMs (≤30 wt%) could work as a sintering additive, which could enhance the bonding necks between Al2O3 PHMs. When the content of SiO2 PHMs increased from 0 wt% to 30 wt%, the compressive strength of Al2O3-based ceramics increased from 0.3 MPa to 4.0 MPa, and the porosity decreased from 77.0% to 65.0% with open pore size decreased from 52.0 μm to 38.3 μm. However, SiO2 PHMs could provide pores by keeping its integrity when the content of SiO2 PHMs increased to 40 wt%, which could result in the porosity increasing to 66.8% and pore size decreasing to 30.1 μm. Selective laser sintering of different kinds of ceramic PHMs is a feasible method to fabricate porous ceramics with complex shape, controllable pore size and improved properties.  相似文献   

3.
This paper reports the joining of liquid-phase sintered SiC ceramics using a thin SiC tape with the same composition as base SiC material. The base SiC ceramics were fabricated by hot pressing of submicron SiC powders with 4 wt% Al2O3–Y2O3–MgO additives. The base SiC ceramics were joined by hot-pressing at 1800-1900°C under a pressure of 10 or 20 MPa in an argon atmosphere. The effects of sintering temperature and pressure were examined carefully in terms of microstructure and strength of the joined samples. The flexural strength of the SiC ceramic which was joined at 1850°C under 20 MPa, was 343 ± 53 MPa, higher than the SiC material (289 ± 53 MPa). The joined SiC ceramics showed no residual stress built up near the joining layer, which was evidenced by indentation cracks with almost the same lengths in four directions.  相似文献   

4.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

5.
Needle-like nanocrystalline mullite powders were prepared through the molten salt process at the temperature of 900°C using coal gangue as raw material. Then, mullite-based composite ceramics were prepared by a conventional solid-state reaction between in situ synthesized mullite and Al2O3 powders. Effects of Al2O3 content and sintering temperatures on phase compositions, microstructure, and mechanical properties of the mullite-based composite ceramics were also studied. The results show that mullite content productivity increase from 72% to 95%, as the sintering temperature increased from 1480°C to 1580°C, which led to the improvement in the bulk density and flexural strength of the samples. The three-dimensional interlocking structure for mullite-based composite ceramics was obtained by the in situ solid-state reaction process. The maximum bulk density, flexural strength, and fracture toughness for the sample with 15 wt% Al2O3 content are 2.48 g/cm3, 139.79 MPa, and 5.62 MPa··m1/2, respectively, as it was sintered at the temperature of 1560°C for 3 h. The improved mechanical properties of mullite-based composite ceramics maybe ascribed to good densification and increased mullite phase content, as well as to the in situ three-dimensional network structure. Therefore, the results would provide new ideas for high-value utilization of coal gangue.  相似文献   

6.
Here, we present a novel strategy to prepare laminated ceramics by combining the ceramic foams and hot-pressing sintering. Al2O3 and ZrO2 ceramic foams prepared by the particle-stabilized foaming method was cut into thin slices and then directly laminated and hot-pressing sintered. Al2O3/ZrO2 laminated ceramics with various structures were prepared. Compared with the slices prepared by conventional process, ceramic foams can easily regulate the thickness of laminate to resemble the nacre-like structure. In addition, the grain in the ceramic foams have lower activity and shrinkage rate, thereby weakening the residual tensile internal stress caused by grain coarsening and differences in coefficient of thermal expansion. The effects of layer number and thickness ratio on residual stress and the structure-activity relationship between mechanical properties and microstructure were investigated. The fracture toughness, flexural strength, and work of fracture of the optimal Al2O3/ZrO2 laminated ceramics are 8.2 ± 1.3 MPa·m1/2, 356 ± 59 MPa, and 216 J·m?2, respectively.  相似文献   

7.
《Ceramics International》2021,47(23):32675-32684
The B4C-LaB6 composite ceramics were fabricated via hot-pressing sintering at 2050 °C and 20 MPa pressure with the mixture of boron carbide (B4C) and 2–5 wt% lanthanum oxides (La2O3) as raw materials. The effects of additive La2O3 content on the microstructures and mechanical properties of composite ceramics were investigated, and reaction mechanisms of La2O3 and B4C at different temperatures were studied in detail. La2CO5, La3BO6 and LaBO3 were formed by the reactions of La2O3 and B4C at different temperatures, and finally LaB6 was formed below 1600 °C. The comprehensive mechanical properties of B4C-LaB6 composite ceramics were optimized by adding 4 wt% La2O3, the flexural strength, fracture toughness and Vickers hardness reached 350 MPa,4.92 MP am1/2 and 39.08 GPa, respectively. The high densification and flexural strength of composite ceramics achieved in the present study were attributed to LaB6 hindering the movement of grain boundary. However, the densification was reduced caused by CO as La2O3 content increased to 5 wt%. The fast channel was formed via B4C reacting with La2O3, which accelerated migration of B4C in the sintering process. The content of La2O3 played an important role in the fracture mode of the composite ceramics, and ultimately affected the fracture toughness of the composite ceramics.  相似文献   

8.
《Ceramics International》2023,49(19):31794-31801
In this paper, BNNSs/Al2O3 composite powder was prepared by in-situ reaction using borate nitridation method and BNNSs/Al2O3 composite ceramics were prepared by hot-pressing sintering. This method achieves uniform mixing of BNNSs and Al2O3 ceramic matrix and reduces the introduction of impurities in the processing process. The BNNSs/Al2O3 composite ceramics have excellent bending strength (549.4 MPa), fracture toughness (5.18 MPa m1/2) and hardness (21.3 GPa). The high hardness of composite ceramics is attributed to high grain boundary strength and density. The reinforcing mechanisms of ceramics include BNNSs pull-out, BNNSs bridging, crack deflection as well as the transgranular fracture and intergranular fracture of Al2O3 matrix.  相似文献   

9.
Ceramics with aluminum borate whiskers (ABWs) were prepared from H3BO3 and Al2O3 reagent, with and without 6 wt% MnO2 used as an addition. The microstructures, phase composition, and crystal structure of the ceramics were analyzed via scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, respectively. The results show that MnO2 is an effective addition for enhancing the flexural strength of ceramics. The MnO2 could lead to the distortion of lattice, and improve the mechanical strength via a solid solution strengthening mechanism. Moreover, the content of H3BO3 and the sintering temperature were also key factors in the manufacture of optimal ceramics. The ceramic made from 6 wt% MnO2 addition, 25 wt% H3BO3, and sintered at 1200°C, showed the highest flexural strength of 88.5 (±1.9) MPa, and had a bulk density of 1.64 g/cm3 and porosity of 44.2%.  相似文献   

10.
《Ceramics International》2022,48(15):21245-21257
The feasibility of preparing low-cost glass-ceramics from Zn-containing dust and secondary molten slag generated during the carbothermal reduction of copper slag was investigated. Analytical-grade agents, such as ZnO, Fe2O3, SiO2, CaO, and Al2O3, were used to simulate the dust and secondary slag. The effect of ZnO content on the crystallization behavior, structure, and mechanical properties of the glass-ceramics was investigated through X-ray diffraction analysis, scanning electron microscopy-energy dispersive spectrometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy. The results showed that with increased ZnO content from 0 to 6 wt%, the crystallization activation energy of base glass increased from 386.05 to 425.89 kJ/mol. Meanwhile, the average value of the crystal growth index increased from 1.91 to 4.10, and the highest crystallization rate of the glass-ceramics increased from about 1.44 to 23.11 mm3/min. The increased ZnO in glass-ceramics promoted the precipitation of gehlenite, but inhibit the crystallization of anorthite. When the ZnO content was 6 wt%, the comprehensive properties of the glass-ceramics were better; the flexural strength, microhardness, volume density, water absorption rate, and open porosity were 58.67 MPa, 738.35 HV, 2.92 g/cm3, 0.44% and 1.27%, respectively.  相似文献   

11.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack.  相似文献   

12.
《Ceramics International》2021,47(20):28904-28912
Novel glass ceramics for LTCC applications with high flexural strength can be achieved by CaO-MgO-ZnO-SiO2(CMSZ) glass cofiring with Al2O3. The sintering shrinkage behavior, crystalline phases, mechanical and dielectric properties, and thermal expansion of the CMZS/Al2O3 glass ceramic were determined. The X-ray diffraction results revealed that multiphases (CaMgSi2O6, Al2Ca(SiO4)2 and ZnAl2O4) formed in the sintering process of the CMZS/Al2O3 glass ceramic. The flexural strength of CMZS/Al2O3 glass ceramics first increases and then decreases with increasing Al2O3 content. The CMZS/Al2O3 glass ceramic with 50 wt % Al2O3 sintered at 890 °C for 2 h achieved the best performance, with a maximum flexural strength of 256 MPa, dielectric constant (εr) of 7.89, dielectric loss (tan δ) of 3.41 × 10−3 (12 GHz), temperature coefficient of resonance frequency (τf) of −29 ppm/°C, and the CTE value of 7.93 × 10−6/°C.  相似文献   

13.
《Ceramics International》2021,47(18):25895-25900
In this study, TiB2–B4C composite ceramics were prepared using Y2O3 and Al2O3 as the sintering aids. Different contents of B4C were added to seek promoted comprehensive mechanical properties of the composites. The mixed powders were sintered at 1850 °C under a uniaxial loading of 30 MPa for 2 h via hot-pressing. Through the measurement of XRD, SEM and related mechanical properties, the influence of B4C content on the microstructure and mechanical properties of TiB2–B4C composites ceramics was discussed. The experimental results show that TiB2–B4C composite ceramics exhibit excellent mechanical properties, which can be attributed to the dense microstructure and fine grain size. In addition, TiB2–B4C composite ceramic shows a relatively high comprehensive properties when the addition amount of B4C is 20 wt%. The relative density, Vickers hardness, fracture toughness and flexural strength are measured to be 99.61%, 27.63 ± 1.73 GPa, 4.77 ± 0.06 MPa m1/2, 612.5 ± 28.78 MPa, respectively.  相似文献   

14.
Porous Al2O3 ceramics with different contents of alumina fibers were prepared by gel-casting process. The effects of Al2O3 fiber content on pore size distribution, porosity, compressive strength, and load-displacement behavior of the ceramic materials were investigated. Initial results showed that with the increase of Al2O3 fiber content, the pore size and porosity of the material is increased, and the compressive strength is decreased. However, upon increasing the fiber content from 50 wt% to 67 wt%, the performance of the samples changed greatly. The compressive strength of the material increased, while the porosity remained unchanged, the pore size increased greatly, and the shape of the load displacement curve changed. It showed that when the fiber content increased from 50 wt% to 67 wt%, the loading body in the fiber-reinforced porous ceramics changed from particles to fibers.  相似文献   

15.
The study on novel physical properties of structural ceramics or ceramic composites could make them more conducive to be function- and structure-integrated materials. Herein, titanium nitride-alumina (TiN–Al2O3) duplex ceramics were prepared and the dielectric spectra of the ceramics were studied from 10 MHz to 1 GHz. Negative permittivity appeared when TiN content exceeded 40 wt% due to the induced plasmonic state of massive delocalized electrons in connected TiN grain networks. Meanwhile, alternating current conduction behaviors of the duplex ceramics were discussed with percolation theory. Furthermore, the analysis of reactance by equivalent circuit models indicated that negative permittivity ceramics exhibited inductive character. This work realized negative dielectric behaviors in TiN–Al2O3 duplex ceramics and would promote the study of electromagnetic functionalization in wave shielding or attenuation for structural ceramics.  相似文献   

16.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   

17.
《Ceramics International》2020,46(17):26888-26894
The mechanical properties of porous ceramics prepared by poly-hollow microspheres (PHMs) is usually low because of the weak bonding between different ceramic PHMs. In this paper, CaSiO3 were coated to the surface of Al2O3 PHMs through co-precipitation method as sintering additive to improve the properties of Al2O3 poly-hollow microsphere ceramics (Al2O3 PHM ceramics). The influence of different amount of CaCl2 solution on properties of the Al2O3 PHM ceramics such as phase composition, microstructure, porosity and mechanical properties were studied. The porosity of the Al2O3 PHM ceramics decreased from 77.03% to 68.16% with the increase of CaCl2 solution amount, while compressive strength increased 29 times from 0.29 MPa to 8.39 MPa. The addition of the CaSiO3 could decrease the sintering temperature of Al2O3 PHM ceramics and significantly improve the mechanical properties of Al2O3 PHM ceramics, which is beneficial for preparing highly porous Al2O3 PHM ceramics with high mechanical properties and complex shapes.  相似文献   

18.
The effects of Fe2O3 on phase evolution, density, microstructural development, and mechanical properties of mullite ceramics from kaolin and alumina were systematically studied. X-ray diffraction results suggested that the ceramics consisted of mullite, sillimanite, and corundum, in the sintering range of 1450°C–1580°C. However, as the sintering was raised to 1580°C, mullite is the main phase with a content of 94%, and the corundum phase content is 5.9%. Simultaneously, high-temperature sintering had a positive effect on the densification of the mullite ceramics, where both the bulk density and flexural strength could be optimized by adjusting the content of Fe2O3. It was found that 6 wt% Fe2O3 was optimal for the formation of rod-shaped mullite after sintering at 1550°C for 3 h. The sample's maximum bulk density was 2.84 g/cm3, with a flexural strength of 112 MPa. Meanwhile, rod-shaped mullite grains with an aspect ratio of ~9 were formed. As a result, a dense network structure was developed, thus leading to mullite ceramics with excellent mechanical properties. The effect of Fe2O3 on the properties might be attributed to the fact that Al3+ ions in the [AlO6] octahedron were replaced by Fe3+ ions, resulting in lattice distortion.  相似文献   

19.
《Ceramics International》2017,43(13):9815-9822
Porous acicular mullite (3Al2O3·2SiO2) ceramics containing Cu3Mo2O9 as a soot oxidation catalyst was fabricated by a novel approach using commercial powders of Al2O3 and CuO, and powder obtained by controlled oxidation of ground waste MoSi2. The obtained material consisted of elongated mullite grains which are known to be effective in carbon soot removal from diesel engine exhaust. The presence of in situ created Cu3Mo2O9 was found to catalyze the carbon burnout which is an extremely important feature when it comes to filter regeneration, i.e., the captured soot removal. The carbon burnout temperature in the sample containing 12 wt% CuO was by 90 °C lower than that in the sample without CuO. Effect of sintering temperature as well as the effect of amount of CuO additive on mullite properties were studied. It was found that the increase in amount of CuO in samples sintered at 1300 °C decreased porosity and increased compressive strength of the porous mullite ceramics. The addition of 12 wt% CuO increased the strength of the porous mullite ceramics up to 70 MPa, whereas the porosity was reduced from 62% in the mullite without CuO to 44% in the mullite ceramics containing 12 wt% CuO. Although affected by the amount of CuO, the microstructure still consisted of elongated mullite grains.  相似文献   

20.
《Ceramics International》2020,46(12):20313-20319
This work reports the synthesis of calcium copper titanate (CaCu3Ti4O12)/multiwall carbon nanotubes (MWCNT) composites using ultrasonic technique followed by sintering in a high vacuum furnace. The effect of MWCNT content (0.05, 0.1, 0.15, and 0.2 wt%) on the structural, dielectric, and mechanical properties of CaCu3Ti4O12 (abbreviated as CCTO) were investigated by TEM, XRD, FTIR, FESEM-EDAX, dielectric measurement, as well as tensile strength and flexural strength tests. XRD patterns revealed that the MWCNT loading did not affect the phase structure; however, the average crystallite size (D) was reduced from 60.88 nm to 40.79 nm. The samples had porous structures and the porosity reduced from 45.57% to 40.73% with MWCNT loading. The dielectric and mechanical properties of CCTO were enhanced with an increase in MWCNT loading. An important observation was that the CCTO mixed with 0.2 wt% MWCNT exhibited the highest dielectric permittivity (εr = 27,768) and the lowest dielectric loss (tan δ = 0.52) at 1 kHz. With the addition of 0.2 wt% MWCNT, the values of load, tensile, and flexural strength increased to 10.38 kN, 101.88 MPa, and 275.07 MPa, respectively, due to improvement in densification. These outcomes have values for the fabrication of CCTO and the optimization of its performance for electronic devices such as capacitors and antennas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号