首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22692篇
  免费   1850篇
  国内免费   867篇
电工技术   1261篇
技术理论   2篇
综合类   1518篇
化学工业   3652篇
金属工艺   1176篇
机械仪表   1453篇
建筑科学   1943篇
矿业工程   664篇
能源动力   617篇
轻工业   1460篇
水利工程   417篇
石油天然气   1341篇
武器工业   220篇
无线电   2532篇
一般工业技术   2731篇
冶金工业   1083篇
原子能技术   204篇
自动化技术   3135篇
  2024年   40篇
  2023年   337篇
  2022年   518篇
  2021年   771篇
  2020年   633篇
  2019年   476篇
  2018年   610篇
  2017年   673篇
  2016年   590篇
  2015年   823篇
  2014年   995篇
  2013年   1293篇
  2012年   1335篇
  2011年   1491篇
  2010年   1290篇
  2009年   1211篇
  2008年   1276篇
  2007年   1128篇
  2006年   1280篇
  2005年   1217篇
  2004年   784篇
  2003年   739篇
  2002年   735篇
  2001年   635篇
  2000年   602篇
  1999年   749篇
  1998年   568篇
  1997年   530篇
  1996年   435篇
  1995年   365篇
  1994年   315篇
  1993年   209篇
  1992年   195篇
  1991年   137篇
  1990年   116篇
  1989年   92篇
  1988年   77篇
  1987年   38篇
  1986年   27篇
  1985年   24篇
  1984年   15篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1976年   1篇
  1968年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
Carbon black (CB) filled elastomers are structurally complex materials that offer unique properties at different length scales. They have tremendous potential applications in a number of fields including the automotive and aerospace industries and for designing innovative smart materials such as artificial muscles but their applications remain limited primarily due to inadequate understanding of their unique mechanical properties. Here, using the Berkovich technique to probe the surface mechanical properties at different scales the nanoindentation response of a series of composites made by homogeneously dispersed CB nanoparticles inside a semicrystalline copolymer matrix has been explored. While the measured loading part of the force–displacement curves is well described by Meyer's empirical power relation, the inverted methodology (IM) approach to deal with the unloading part has been considered and its outcome has been compared with that obtained from the standard Oliver–Pharr's method. The results were consistent with the observed increase of hardness when the applied displacement decreases for all composite samples over a large range of CB volume fraction. Zhang and Xu's model is demonstrated to produce experimentally consistent explanation of this indentation size effect. X-ray photoelectron spectroscopy (XPS) spectra also show composition gradients with depth up to 100 nm. Furthermore, the effect of CB content, surface features, and length scale-dependent deformation on the hardness–displacement behavior have been considered. These findings highlight the possibility of attaining a diverse set of mechanical properties by a better understanding of the nanoindentation response of CB filled elastomers which can be useful for material selection and design improvements in a number of practical applications.  相似文献   
2.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.  相似文献   
3.
Osteogenic glue that reproduces the natural bone composition represents the final frontier of orthopedic adhesives with the potential to revolutionize surgical strategies against comminuted fractures. However, it is difficult to achieve an all-in-one formula, which could provide flexible and reliable adhesiveness while avoiding interfering with or even promoting the healing of glued fractures. Herein, an osteogenic glue characterized by inorganic-in-organic integration between amine-modified mesoporous bioactive glass nanoparticles (AMBGN) and bioadhesive gelatin-dextran network (GelDex) is introduced as an all-in-one tool to flexibly adhere and splice bone fragments and subsequently guide fracture healing during degradation. Relying on such integration, a 4-fold improvement in cohesiveness is presented, followed by a nearly 5-fold enhancement in adhesive strength in ex vivo porcine bone samples. The reversible and re-adjustable adhesiveness also enables glue to effectively splice intricate fragments from highly comminuted fractures in the rabbit radius in an in vivo environment. Moreover, well-preserved organic–inorganic integrity during degradation of the glue guides sustained interfacial osteogenesis and achieve satisfying healing outcomes in glued fractures, as observed by the 2-fold improvement in biomechanical and radiological performance compared with commercially available cyanoacrylate adhesives. The current findings propose an all-in-one solution for the fixation of bone fragments during surgery.  相似文献   
4.
Rong  Xiaofeng  Yang  Yumin  Liu  Xuefei  Xiao  Wenjun  Yang  Cheng  Wang  Zhen  Liu  Zhaohui  Xiao  Yuanni  Wang  Degui  Xu  Huiying  Cai  Zhiping 《Journal of Materials Science: Materials in Electronics》2022,33(27):21569-21575
Journal of Materials Science: Materials in Electronics - In this paper, a Q-switched and three-color operation of Neodymium-doped silica all-fiber laser is realized, in which, a few-layer...  相似文献   
5.
Liu  Xing  Cai  Zhaoyang  Xu  Yan  Zheng  Huihui  Wang  Kaige  Zhang  Fengrong 《Water Resources Management》2022,36(4):1463-1479

With rapid socioeconomic and population growth, high-quality arable land resources are decreasing daily, especially in arid areas, which makes arable land reserve resources an important way to supplement arable land. How to accurately evaluate cultivated land reserve resources is of great significance to socioeconomic development and sustainable land use in arid areas. Therefore, this study selected Hangjin Banner as a typical area and calculated the regional maximum available irrigation water based on the principle of regional water balance. Then, the "irrigation area check algorithm" was used to evaluate the amount of cultivated land reserve resources, and policy recommendations were proposed for the development and utilization of cultivated land resources. The results showed that Hangjin Banner had no cultivated land reserve resources under the current irrigation method and had cultivated land reserve resources under the efficient water-saving irrigation method, but only in the southern zone during normal and partially abundant water years. Therefore, we believe that arid areas should adhere to the "set land by water" principle, the allocation of water resources should be optimized, and cultivated land resources with high quality should be utilized based on the actual regional conditions.

  相似文献   
6.
Fe2O3 with high theoretical capacity, low cost, and environmental friendliness has been attracted great attention in lithium-ion batteries (LIBs), which however is limited by low rate capability and fast capacity fading owing to low electronic conductivity, self-aggregation, and sever volume expansion. CNTs with excellent conductivity and unique 3D interconnected network are ideal matrices for composite electrochemical materials, but it is difficult to meet the demand of high capacity. Here, uniform α-Fe2O3 nanoparticles with narrow gap (~1.4 nm) were immobilized on CNTs through N-doped carbon (α-Fe2O3/CNTs-NC) that can address these issues. As an advanced LIBs anode, the electrode displays unprecedented specific capacity (1173 mAh/g at 0.2 A/g) and outstanding rate behavior (716.4 mAh/g at 5.0 A/g after 1200 cycles), which are even superior to the theoretical capacity (1007 mAh/g) and the performance of most reported Fe2O3-based anodes. Homogeneous nano-sized α-Fe2O3 with a narrow gap highly shortens the diffusion path for Li+ transport, exposes quite sufficient active sites, and prevents the volume change. Moreover, the 3D backbone of CNTs with a more homogeneously distributed electric field can enhance conductivity, and tightly contact with α-Fe2O3 by NC, then obtain robust structural stability, which boosts LIBs in storage capacity, rate capability, and cycling stability.  相似文献   
7.
Qi  Shuang  Xiang  WenXin  Cai  LiXun  Liu  XiaoKun  Shao  ChunBing  Ning  FangMao  Shi  JinHua  Yu  WeiWei 《中国科学:技术科学(英文版)》2021,64(12):2577-2585
Science China Technological Sciences - Mixed-mode I-II crack-based fatigue crack propagation (FCPI-II) usually occurs in engineering structures; however, no theoretical formula or effective...  相似文献   
8.
First examples of multichain (polycatenar) compounds, based on the π-conjugated [1]benzothieno[3,2-b]benzothiophene unit are designed, synthesized, and their soft self-assembly and charge carrier mobility are investigated. These compounds, terminated by the new fan-shaped 2-brominated 3,4,5-trialkoxybenzoate moiety, form bicontinuous cubic liquid crystalline (LC) phases with helical network structure over extremely wide temperature ranges (>200 K), including ambient temperature. Compounds with short chains show an achiral cubic phase with the double network, which upon increasing the chain length, is at first replaced by a tetragonal 3D phase and then by a mirror symmetry is broken triple network cubic phase. In the networks, the capability of bypassing defects provides enhanced charge carrier mobility compared to imperfectly aligned columnar phases, and the charge transportation is non-dispersive, as only rarely observed for LC materials. At the transition to a semicrystalline helical network phase, the conductivity is further enhanced by almost one order of magnitude. In addition, a mirror symmetry broken isotropic liquid phase is formed beside the 3D phases, which upon chain elongation is removed and replaced by a hexagonal columnar LC phase.  相似文献   
9.
Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention) of soil.However,variations in densities alter the properties of the soil-biochar mix.Such density variations are observed in agriculture(loosely compacted) and engineering(densely compacted) applications.The influence of biochar amendment on gas permeability of soil has been barely investigated,especially for soil with diffe rent densities.The maj or obj ective of this study is to investigate the water retention capacity,and gas permeability of biochar-amended soil(BAS) with different biochar contents under varying degree of compaction(DOC) conditions.In-house produced novel biochar was mixed with the soil at different amendment rates(i.e.biochar contents of 0%,5% and 10%).All BAS samples were compacted at three DOCs(65%,80% and 95%) in polyvinyl chloride(PVC)tubes.Each soil column was subjected to drying-wetting cycles,during which soil suction,water content,and gas permeability were measured.A simplified theoretical framework for estimating the void ratio of BAS was proposed.The experimental results reveal that the addition of biochar significantly decreased gas permeability k_g as compared with that of bare soil(BS).However,the addition of 5%biochar is found to be optimum in decreasing kg with an increase of DOC(i.e.k_(g,65%) k_(g,80%) k_(g,95%)) at a relatively low suction range(200 kPa) because both biochar and compaction treatment reduce the connected pores.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号