首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
作为基本的电力电子变换器,单相全桥结构两电平电压源变换器包括单相电压源逆变器、单相并网逆变器、单相电压源整流器和单相有源电力滤波器,具有广泛的应用场合。鉴于单相电压源变换器具有多解性,可以寻找一种减少开关次数的调制算法,以便降低开关损耗。本文根据三相电压源全桥结构两电平电压源变换器的最小开关次数调制算法,设计了一种适合单相全桥结构两电平电压源变换器的最少开关次数的调制算法,在理论分析的基础上,采用MATLAB/SIMULINK进行了仿真验证。  相似文献   

2.
A novel three-level pulsewidth modulation (PWM) rectifier/inverter is proposed: this single-phase three-level rectifier with power factor correction and current harmonic reduction is proposed to improve power quality. A three-phase three-level neutral point clamped (NPC) inverter is adopted to reduce the harmonic content of the inverter output voltages and currents. In the adopted rectifier, a switching mode rectifier with two AC power switches is adopted to draw a sinusoidal line current in phase with mains voltage. The switching functions of the power switches are based on a look-up table. To achieve a balanced DC-link capacitor voltage, a capacitor voltage compensator is employed. In the NPC inverter, the three-level PWM techniques based on the sine-triangle PWM and space vector modulation are used to reduce the voltage harmonics and to drive an induction motor. The advantages of the adopted th-ree-level rectifier/inverter are (1) the blocking voltage of power devices (T1, T2, Sa1-Sc4) is clamped to half of the DC-link voltage, (2) low conduction loss with low conduction resistance due to low voltage stress, (3) low electromagnetic interference, and (4) low voltage harmonics in the inverter output. Based on the proposed control strategy, the rectifier can draw a high power factor line current and achieve two balance capacitor voltages. The current harmonics generated from the adopted rectifier can meet the international requirements. Finally, the proposed control algorithm is illustrated through experimental results based on the laboratory prototype.  相似文献   

3.
A new three phase three-level pulsewidth modulation (PWM) switched voltage source inverter with zero neutral point potential is proposed. It consists of three single-phase inverter modules and each module is composed of a switched voltage source and inverter switches. The major advantage is that the peak value of the phase output voltage is twice as high as that of the conventional neutral-point-clamped PWM inverter. Thus, the proposed inverter is suitable for applications with low voltage sources such as batteries, fuel cells, or solar cells. Furthermore, three-level waveforms of the proposed inverter can be achieved without the switch voltage unbalance problem. Since the average neutral point potential of the proposed inverter is zero, a common ground between the input stage and the output stage is possible. Therefore, it can be applied to a transformerless power conditioning system. The proposed inverter is verified by a PSpice simulation and experimental results based on a laboratory prototype.  相似文献   

4.
This paper proposes a novel control scheme of single-phase-to-three-phase pulsewidth-modulation (PWM) converters for low-power three-phase induction motor drives, where a single-phase half-bridge PWM rectifier and a two-leg inverter are used. With this converter topology, the number of switching devices is reduced to six from ten in the case of full-bridge rectifier and three-leg inverter systems. In addition, the source voltage sensor is eliminated with a state observer, which controls the deviation between the model current and the system current to be zero. A simple scalar voltage modulation method is used for a two-leg inverter, and a new technique to eliminate the effect of the dc-link voltage ripple on the inverter output current is proposed. Although the converter topology itself is of lower cost than the conventional one, it retains the same functions such as sinusoidal input current, unity power factor, dc-link voltage control, bidirectional power flow, and variable-voltage and variable-frequency output voltage. The experimental results for the V/f control of 3-hp induction motor drives controlled by a digital signal processor TMS320C31 chip have verified the effectiveness of the proposed scheme  相似文献   

5.
为了提高逆变器的稳定性和供电质量,文中介绍了一种基于极点配置的逆变器瞬时电压电流PI控制器的设计方法,建立了系统模型,比较分析了基于电感电流反馈控制和基于电容电流反馈控制技术。仿真结果表明,基于电感电流电压双环控制技术具有较好的输出特性。  相似文献   

6.
This paper presents a single-phase five-level photovoltaic (PV) inverter topology for grid-connected PV systems with a novel pulsewidth-modulated (PWM) control scheme. Two reference signals identical to each other with an offset equivalent to the amplitude of the triangular carrier signal were used to generate PWM signals for the switches. A digital proportional-integral current control algorithm is implemented in DSP TMS320F2812 to keep the current injected into the grid sinusoidal and to have high dynamic performance with rapidly changing atmospheric conditions. The inverter offers much less total harmonic distortion and can operate at near-unity power factor. The proposed system is verified through simulation and is implemented in a prototype, and the experimental results are compared with that with the conventional single-phase three-level grid-connected PWM inverter.  相似文献   

7.
This paper presents a new quasi-resonant DC-link (QRDCL) inverter. Only one switching device is used to create zero voltage instants under all load conditions. The maximum voltage across the inverter devices is maintained at around (1.01-1.1) times the input source voltage. The circuit has the flexibility of selecting switching instants of the resonant link in synchronism with any PWM technique. Control technique does not require the help of inverter switches to create the zero voltage instants in the DC-link, and voltage and current sensors are eliminated from the control circuit. In this paper, the principle of operation and detailed analysis of the proposed QRDCL inverter are presented and design considerations for achieving soft switching are obtained. Detailed PSPICE simulation studies are carried out to study the feasibility of the proposed topology under various load conditions. The experimental results of the proposed QRDCL PWM inverter feeding a three phase induction motor are given.  相似文献   

8.
In most high-performance applications of voltage source pulse-width modulation inverters, current control is an essential part of the overall control system. In this paper, a hysteresis current control technique for a single-phase five-level inverter with flying-capacitor topology is proposed. Logic controls and a programmable logic device are suitable for handling a large number of switches and implementation of state transitions. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimize switching losses. The simulation and experimental results describe and verify the current control technique for the inverter.  相似文献   

9.
10.
This paper proposes an isolated cascaded multilevel inverter employing low-frequency three-phase transformers and a single dc input power source. The proposed circuit configuration can reduce a number of transformers compared with traditional three-phase multilevel inverters using single-phase transformers. It controls switching phase angles to obtain an optimal switching pattern identified with the fundamental frequency of the output voltage. Owing to this control strategy, harmonic components of the output voltage and switching losses can be diminished considerably. To verify the performance of the proposed approach, we implemented computer-aided simulations and experiments using a prototype.   相似文献   

11.
A multilevel PWM voltage source inverter, especially a five-level one, is introduced to obtain a static var compensator (SVC) as a large scale power source. The multilevel inverter has many advantages, such as better utilization of the switching devices, lower switching frequency at each semiconductor switch and reduced harmonics. In this paper, the SVC with five-level inverter is modelled using circuit DQ transformation and completely analysed including DC and AC characteristics. It is also pointed out that the modulation indexes depend on the values of the DC side capacitors to meet the DC side voltage balancing, Finally, through the experimental results from a 5kVA SVC, the validity of the analyses and the feasibility of the var compensation system are shown for high power applications.  相似文献   

12.
The High power induction machines are designed at medium voltage (MV) rating for better performance. The multilevel inverters (MLI) are able to provide medium voltage with high quality output at low switching frequency as compared to conventional two-level inverter. In addition to this, MLI reduces $dv/dt$, switching losses and leakage current. In this paper, approaches to reduce and eliminate the common mode voltage (CMV) using five-level diode clamped multilevel inverter (DCMLI) are presented. The CMV spikes are also eliminated by shifting dead-time across the phase pole. A novel technique for the selection of switching states to synthesize the desire vector is proposed. This paper realizes the implementation of five-level diode clamped MLI for three phase induction motor. Experimental results demonstrate the feasibility of the proposed solution.   相似文献   

13.
Parallel processing inverter system   总被引:5,自引:0,他引:5  
A novel method of instantaneous voltage and power balance control of a parallel processing inverter system is proposed. It consists of a high-speed switching PWM (pulsewidth modulated) inverter with an instantaneous current minor loop controller, a voltage major loop controller, and a power balance controller. This system realizes the following functions with only one inverter: constant AC output voltage control with reactive power control, active filtering to absorb load current harmonics, DC voltage and current control as AC-to-DC converter, and uninterruptible power supply (UPS) for stand-alone operation. This system covers a wide application range, including UPS systems, new energy systems, and active filters with voltage control functions  相似文献   

14.
Regulation of load voltage in single-phase applications is becoming an important issue for critical loads. This paper presents a novel high-performance single-phase voltage regulator which has a common arm between the rectifier and inverter, and adopts an appropriate switching strategy. The proposed voltage regulator employs six switches and can be implemented by only one three-phase inverter module. The proposed voltage regulator has the capability of delivering sinusoidal input current with unity power factor, good output voltage regulation, and bidirectional power flow. For these purposes, a fully digital controller is designed and implemented using a TMS320F240 digital signal processor. In addition, a novel low-cost AC capacitor is also presented. This type of capacitor requires two DC capacitors and two diodes, enabling low-cost and compact manufacturing. Consequently, the complete voltage regulator system, which is mainly suitable for an uninterruptible power supply as well as reactive or nonlinear loads, can be constructed compactly and inexpensively. Experimental results are presented to verify the feasibility of the proposed voltage regulator system  相似文献   

15.
王强  李兵  王天施  刘晓琴 《电子学报》2020,48(3):616-620
为改善单相AC-DC-AC变换器的性能,提出了一种单相谐振直流环节零电压开关AC-DC-AC功率变换器拓扑结构,由图腾柱式单相整流器,位于直流环节的辅助谐振电路和单相全桥逆变器组成.利用同一组辅助电路能分别将整流器输出端电压和逆变器输入端电压变化到零,使整流器和逆变器桥臂上的开关器件分别实现零电压切换.分析了电路的工作流程,在1.2kW样机上的实验结果表明开关器件完成了软切换.该拓扑结构对于研发节能型单相AC-DC-AC变换器具有借鉴意义.  相似文献   

16.
A high-performance three- to single-phase online uninterruptible power supply (UPS) is proposed. The proposed UPS is composed of a rectifier, a battery charger/discharger, and an inverter. The rectifier has the capability of power-factor correction and regulates a dc-link voltage. When the rectifier becomes unavailable or when the current required by the load exceeds the output rating of the rectifier, the charger/discharger supplies the power demanded by the load to a dc-link capacitor. The inverter provides a regulated sinusoidal output voltage and limits an output current under an impulsive load. New control algorithms of the rectifier, the charger/discharger, and the inverter are proposed. The proposed algorithms of the rectifier and the charger/discharger improve dynamic performance at step load change. To improve the transient response of the output voltage at outage of an input source, a mode change method of the charger/discharger is also proposed. Additionally, the proposed current-limit algorithm of the inverter can be implemented without additional hardware, and it increases the reliability of the UPS.   相似文献   

17.
因含有大量的开关器件,多电平逆变器难以用基于模型的方法进行故障诊断。针对这一问题,提出了一种基于神经网络的故障识别和分类方法。采用载波相移脉冲宽度调制(PWM)策略搭建级联五电平逆变电路,对逆变器的输出电压信号进行快速傅里叶变换,获取其频谱并以此作为特征信息。利用反向传播算法(BP)神经网络对输出电压模式进行分类。Matlab仿真结果表明,本文设计的 BP神经网络有效地实现了对逆变器的故障诊断。  相似文献   

18.
This paper describes a 6.6-kV adjustable-speed motor drive for pumps and blowers without transformer. The power conversion system consists of a front-end diode rectifier, a five-level diode-clamped pulsewidth modulation (PWM) inverter with a voltage balancing circuit, and a hybrid active filter for harmonic-current mitigation of the diode rectifier. The control of the inverter is characterized by superimposing a third-harmonic zero-sequence voltage on each of the three-phase reference voltages to achieve the so-called overmodulation and reduce the switching stress of insulated gate bipolar transistors (IGBTs). A 200-V 5.5-kW downscale model is designed, constructed, and tested with focus on the five-level PWM inverter and the voltage balancing circuit. Experimental results obtained from the 200-V downscale model verify the viability and effectiveness of the 6.6-kV adjustable-speed motor drive, showing that the four split dc capacitor voltages are well balanced in all the operating conditions and that the switching stress of the IGBTs is reduced at low modulation indexes.  相似文献   

19.
The controlled-capacitor-charging (CCC) technique is utilized in this paper to synthesize a sinusoidal voltage at the output from the unregulated dc at the input. The method is based on the controlled charging/discharging of a capacitor to realize the desired voltage waveform. A capacitor that is connected across the load is charged/discharged through an inductor by applying high-frequency pulses. The applied pulses could be of either positive or negative polarity, depending on the error signal in the controller. The controller senses the output voltage and current and operates to maintain zero-current switching at every turn-on while keeping the output voltage close to the reference waveform by a tracking-control algorithm, enforcing limits in maximum switching frequency and voltage ripples. This paper presents a direct method of implementing the pulsewidth modulation for the single-phase full-bridge inverter, using the CCC technique. A simple procedure to design such an inverter is also discussed. The proposed controller is simulated in a personal computer simulation program with integrated circuit emphasis. Supporting results from an experimental prototype confirm the usefulness of the proposed controller. The inverter may be used in uninterruptible power supply and many other applications.   相似文献   

20.
A parallel resonant DC link (PRDCL) circuit topology is proposed as an approach to realizing zero switching loss DC-AC high switching frequency power conversion. The proposed circuit is used as an interface between the DC voltage supply and a voltage source pulse width modulated (PWM) inverter to provide a short zero voltage period in the DC link of the inverter to allow zero voltage switchings to take place in the PWM inverter. The peak voltage stress on the PWM inverter switches is limited to the DC supply voltage. Another significant advantage of the circuit is that the inverter can be controlled by the conventional PWM strategy. The proposed circuit is systematically analyzed and its operation principle is explained. Design considerations and design formulas are presented. A complete zero voltage switching DC-AC system consisting of the proposed circuit and a PWM inverter was simulated on a computer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号