首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   2篇
化学工业   3篇
无线电   13篇
一般工业技术   1篇
自动化技术   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有18条查询结果,搜索用时 343 毫秒
1.
Ultra thin HfAlOx high-k gate dielectric has been deposited directly on Si1−xGex by RF sputter deposition. The interfacial chemical structure and energy-band discontinuities were studied by using X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (TOF-SIMS) and electrical measurements. It is found that the sputtered deposited HfAlOx gate dielectric on SiGe exhibits excellent electrical properties with low interface state density, hysteresis voltage, and frequency dispersion. The effective valence and conduction band offsets between HfAlOx (Eg = 6.2 eV) and Si1−xGex (Eg = 1.04 eV) were found to be 3.11 eV and 2.05 eV, respectively. In addition, the charge trapping properties of HfAlOx/SiGe gate stacks were characterized by constant voltage stressing (CVS).  相似文献   
2.
High dielectric constant (high-k) thin Ta/sub 2/O/sub 5/ films have been deposited on tensilely strained silicon (strained-Si) layers using a microwave plasma enhanced chemical vapour deposition technique at a low temperature. The deposited Ta/sub 2/O/sub 5/ films show good electrical properties as gate dielectrics and are suitable for microelectronic applications. The feasibility of integration of strained-Si and high-k dielectrics has been demonstrated.  相似文献   
3.
Few-wall carbon nanotubes were synthesized by methane/acetylene decomposition over bimetallic Fe-Mo catalyst with MgO (1:8:40) support at the temperature of 900°C. No calcinations and reduction pretreatments were applied to the catalytic powder. The transmission electron microscopy investigation showed that the synthesized carbon nanotubes [CNTs] have high purity and narrow diameter distribution. Raman spectrum showed that the ratio of G to D band line intensities of I G/I D is approximately 10, and the peaks in the low frequency range were attributed to the radial breathing mode corresponding to the nanotubes of small diameters. Thermogravimetric analysis data indicated no amorphous carbon phases. Experiments conducted at higher gas pressures showed the increase of CNT yield up to 83%. M?ssbauer spectroscopy, magnetization measurements, X-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were employed to evaluate the nature of catalyst particles.  相似文献   
4.
ABSTRACT: Electrical and physical properties of a metal-oxide-semiconductor [MOS] structure using atomic layer-deposited high-k dielectrics (TiO2/Al2O3) and epitaxial GaAs [epi-GaAs] grown on Ge(100) substrates have been investigated. The epi-GaAs, either undoped or Zn-doped, was grown using metal-organic chemical vapor deposition method at 620°C to 650°C. The diffusion of Ge atoms into epi-GaAs resulted in auto-doping, and therefore, an n-MOS behavior was observed for undoped and Zn-doped epi-GaAs with the doping concentration up to approximately 1017 cm-3. This is attributed to the diffusion of a significant amount of Ge atoms from the Ge substrate as confirmed by the simulation using SILVACO software and also from the secondary ion mass spectrometry analyses. The Zn-doped epi-GaAs with a doping concentration of approximately 1018 cm-3 converts the epi-GaAs layer into p-type since the Zn doping is relatively higher than the out-diffused Ge concentration. The capacitance-voltage characteristics show similar frequency dispersion and leakage current for n-type and p-type epi-GaAs layers with very low hysteresis voltage (approximately 10 mV).PACS: 81.15.Gh.  相似文献   
5.
Nandi  S K  Chatterjee  S  Samanta  S K  Dalapati  G K  Bose  P K  Varma  S  Patil  Shivprasad  Maiti  C K 《Bulletin of Materials Science》2003,26(4):365-369
High dielectric constant (high-k) Ta2O5films have been deposited on ZnO/p-Si substrate by microwave plasma at 150°C. Structure and composition of the ZnO/p-Si films have been investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) for chemical composition. The electrical properties of the Ta2O5/ZnO/p-Si metal insulator semiconductor (MIS) structures were studied using high frequency capacitance-voltage (C-V), conductance-voltage (G-V) and current-voltage (I-V) characteristics. Charged trapping properties have been studied by measuring the gate voltage shift due to trapped charge generation under Fowler-Nordheim (F-N) constant current stressing.  相似文献   
6.
Heterojunction solar cells of p‐type cupric oxide (CuO) and n‐type silicon (Si), p‐CuO/n‐Si, have been fabricated using conventional sputter and rapid thermal annealing techniques. Photovoltaic properties with an open‐circuit voltage (Voc) of 380 mV, short circuit current (Jsc) of 1.2 mA/cm2, and a photocurrent of 2.9 mA/cm2 were observed for the solar cell annealed at 300 °C for 1 min. When the annealing duration was increased, the photocurrent increased, but the Voc was found to reduce because of the degradation of interface quality. An improvement in the Voc resulting to a record value of 509 mV and Jsc of 4 mA/cm2 with a high photocurrent of ~12 mA/cm2 was achieved through interface engineering and controlling the phase transformation of CuO film. X‐ray diffraction, X‐ray photoelectron spectroscopy, and high‐resolution transmission electron microscopy analysis have been used to investigate the interface properties and crystal quality of sputter‐deposited CuO thin film. The improvement in Voc is mainly due to the enhancement of crystal quality of CuO thin film and interface properties between p‐CuO and n‐Si substrate. The enhancement of photocurrent is found to be due to the reduction of carrier recombination rate as revealed by transient photovoltage spectroscopy analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
8.
Deposition and electrical properties of high dielectric constant (high-k) ultrathin ZrO2 films on tensilely strained silicon (strained-Si) substrate are reported. ZrO2 thin films have been deposited using a microwave plasma enhanced chemical vapor deposition technique at a low temperature (150 °C). Metal insulator semiconductor (MIS) structures are used for high frequency capacitance–voltage (CV), current–voltage (IV), and conductance–voltage (GV) characterization. Using MIS capacitor structures, the reliability and the leakage current characteristics have been studied both at room and high temperature. Schottky conduction mechanism is found to dominate the current conduction at a high temperature. Observed good electrical and reliability properties suggest the suitability of deposited ZrO2 thin films as an alternative as gate dielectrics. Compatibility of ZrO2 as a gate dielectric on strained-Si is shown.  相似文献   
9.
The influence of temperature on the intensity of light emitted by as well as the carrier life time of a standard AlGaAs based light emitting diode has been investigated in the temperature range from 345 to 136 K. The open-circuit voltage decay(OCVD) technique has been used for measured the carrier lifetime. Our experimental results reveal a 16% average increase in intensity and a 163.482-19.765 ns variation in carrier lifetime in the above temperature range. Further, theoretical and experimental analysis show that for negligible carrier density the intensity is inversely proportional to carrier lifetime for this sample.  相似文献   
10.
To get useful information about the carrier transport mechanism we first measure the current-voltage (I-V) characteristics of a silicon p-n photodiode (VTB8440BH) in the temperature range 350 ? 110 K. All semilog I-V curves exhibit three successive linearly dependent regions along with their bias levels which are defined as I, II and III regions, respectively. Regions I and II with different slopes are used to determine the bias dependent ideality factors namely, n1 and n2. The variation of n1 and n2 with temperature shows that with lowering of temperature the tunneling probability gradually increases. Furthermore, these results are used to identify the paramount carrier at different bias levels. Secondly, to acquire knowledge of electron-hole generation rate we measure the variation of photocurrent in the same temperature range. Results show that photocurrent decreases slowly as temperature decreases from 350 to 239 K and it changes sharply below 239 K. The change of photocurrent with temperature is explained in terms of temperature dependence of carrier mobility, lifetime and optical generation rate. Finally, these results will be helpful for precision application of the optoelectronics device in both high and low temperature ambience.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号