首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 252 毫秒
1.
采用微波加热合成了Ba4Nd9.33Ti18O54(BNT)微波介质固溶体陶瓷粉末,研究了微波加热工艺对BNT陶瓷相组成与微观形貌的影响。结果表明:微波加热相比于常规加热可以实现BNT陶瓷的低温快速合成;通过添加质量分数45%的B2O3-SiO2-CaO-MgO(BS)玻璃实现了BNT陶瓷于875℃烧结致密化。1 100℃微波合成的BNT陶瓷加BS玻璃烧结后具有最佳性能:εr=35.8,tanδ=12×10–4,σf=103.7 MPa,λ=2.576 W/(m.K)。  相似文献   

2.
采用固相法制备了BaO-Nd2O3-TiO2( BNT)陶瓷,研究了Bi2O3-SiO2-ZnO-CaO( BSZC)玻璃添加量对所制BNT陶瓷介电性能的影响.结果表明:添加质量分数7%~9%的BSZC玻璃,可使BNT陶瓷在960℃下烧结致密,匹配10Pd/90Ag内电极,获得相对介电常数εr≈88,介质损耗tanδ=...  相似文献   

3.
Ba6-3xNd8+2xTi18O54晶体结构与微波介电性能的研究   总被引:1,自引:1,他引:0  
采用纳米Nd2O3以较低温度烧结出性能优良的Ba6-3xNd8 2xTi18O54(BNT)微波介质陶瓷。以X-射线衍射法测定了BNT陶瓷粉末的室温点阵常数,确定其空间群为Pbam。分析了BNT晶格结构随配比x的变化情况,与Ba6-3xSm8 2xTi18O54(BST)、Ba6-3xEu8 2xTi18O54(BET)进行比较,结果表明各离子在ab晶面内的分布对Ba6-3xR8 2xTi18O54(BRT)微波介电性能的影响较大。给出了BRT介电常数和品质因数变化的可能解释,即BRT因配比x及稀土元素的不同而产生晶格变化所致。  相似文献   

4.
采用传统固相反应法制备Li2MgTi3O8微波介质陶瓷,研究了BaCu(B2O5)(简称BCB)的添加对Li2MgTi3O8微波介质陶瓷的烧结性能及介电特性的影响.结果表明:BCB作为低熔点氧化物烧结助剂,可有效降低所制陶瓷烧结温度,而且可以调节τf近零.当添加质量分数3%的BCB,900℃烧结所制陶瓷的综合微波介电性...  相似文献   

5.
利用传统陶瓷工艺制备了掺杂(Bi0.5Na0.5)TiO3(BNT),CaCO3和Mn(NO3)2的钛酸钡基无铅PTC陶瓷材料(Bi0.5Na0.5)xBa1–xTiO3-yCaCO3-0.000 2Mn(NO3)2(x=0.005,0.020,0.040,0.080;y=0,0.02,0.04,0.06,0.08),研究了BNT和CaCO3的掺杂量对所制陶瓷微观结构和导电特性的影响。结果表明:试样的晶格常数比c/a、居里温度tC以及室温电阻率ρ25均随着BNT掺杂量的增加而增大;CaCO3的加入能有效降低样品的室温电阻率。当x=0.080,y=0.06时所制得材料的性能最好,其室温电阻率为7×102.cm,居里温度高于150℃,升阻比(ρmax/ρmin)达到103。  相似文献   

6.
利用传统固相烧结法制备了ZnO-B2O3玻璃掺杂的Mg2TiO4微波介质陶瓷,研究了ZnO-B2O3玻璃掺杂对所制陶瓷相成分、微观形貌和微波介电性能的影响。结果表明:ZnO-B2O3玻璃掺杂能使Mg2TiO4陶瓷的致密化温度降低200℃左右。当Mg2TiO4中掺杂质量分数2%的ZnO-B2O3玻璃时,经1 300℃烧结所得陶瓷微波性能较好:εr=13.62、Q.f=101 275 GHz、τf=–51×10–6/℃。  相似文献   

7.
采用传统的固相烧结工艺制备了H3BO3掺杂的Li2ZnTi3O8陶瓷。研究了H3BO3掺杂量对所制Li2ZnTi3O8陶瓷的烧结特性、相成分、微观结构以及微波介电性能的影响。结果表明:H3BO3对于所制陶瓷相成分没有影响,仅为单一的Li2ZnTi3O8相;H3BO3能够将Li2ZnTi3O8陶瓷的烧结温度降低200℃左右,同时没有显著损害该陶瓷的微波介电性能;当H3BO3掺杂量为质量分数2.0%时,950℃烧结的Li2ZnTi3O8陶瓷微波具有良好的介电性能:εr=25.99,Q.f=54 926GHz,τf=-12.17×10–6/℃。  相似文献   

8.
采用传统固相反应法,制备了钨青铜结构BaO·Nd2O3·4TiO2(BNT)陶瓷,并添加质量分数为1%~6%的MgO·Li2O·SiO2(MgLiSi)玻璃。对其显微结构和介电性能进行了研究。结果表明:在BNT陶瓷中添加适量的MgLiSi玻璃,可以使BNT陶瓷的烧结温度从1250℃以上降低到1150℃,并提高其介电性能。当添加质量分数为4%的MgLiSi玻璃时,BNT陶瓷可获得最佳的介电性能:εr=95,tanδ=5×10–4,击穿场强为16.7×103V/mm。  相似文献   

9.
采用传统固相反应法制作(Ni1/3Nb2/3)0.7Ti0.3O2微波陶瓷,研究了CuO掺杂对所制陶瓷低温烧结性能、微观结构、相构成及微波介电性能的影响。结果表明,掺杂少量的CuO就能显著降低(Ni1/3Nb2/3)0.7Ti0.3O2陶瓷的烧结温度,且能改善陶瓷τf。当CuO掺杂量(质量分数)为1.0%时,(Ni1/3Nb2/3)0.7Ti0.3O2在950℃烧结,显示出良好的微波介电性能:εr=67.65,Q·f=3708GHz,τf=14.3×10-6/℃。  相似文献   

10.
采用微波烧结法和常规烧结法制备0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3微波介质陶瓷,研究了两种烧结方式对陶瓷烧结性能、微观结构、相组成和介电性能的影响。结果表明:与传统烧结方式相比,微波烧结0.92Mg Al2O4-0.08(Ca0.8Sr0.2)TiO3陶瓷缩短了烧结周期,其物相组成无变化,微波烧结后的样品致密度高,晶粒细小,分布均匀,介电性能更加优异。在1 440℃下采用微波烧结20 min制备的0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3陶瓷获得最佳的介电性能,εr=11.20,Q×f=56 217 GHz,τf=–3.4×10–6/℃。  相似文献   

11.
微波烧结Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)陶瓷材料的初步研究   总被引:1,自引:0,他引:1  
研究了Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)(x=0.67,BST)陶瓷材料的微波烧结情况,从烧结特性、微结构与相组成及微波介电性能等方面对微波烧结的样品与传统工艺制得的样品进行了对比.结果表明, 与传统制备工艺相比,微波烧结BST陶瓷缩短了烧结周期,并促进了样品的致密化,其物相组成和传统烧结的样品没有区别,且晶粒细小分布均匀.微波烧结BST陶瓷可获得较优的微波介电性能:介电常数ε_r=82.89,品质因数与频率之积Qf=8 450 GHz(频率f=4.75 GHz),谐振频率温度系数τ_f=22.58×10~(-6)/℃.  相似文献   

12.
采用固相反应法,以Ca0.3(Li0.5Sm0.5)0.7TiO3(CLST—0.7)陶瓷为基料,掺杂质量分数为10%的CaO-B2O3-SiO2(CBS)氧化物和2%~6%的Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)玻璃料为复合烧结助剂,研究了LBSCA掺杂量对CLST—0.7陶瓷的低温烧结行为及微波介电性能的影响。结果表明,复合烧结助剂掺杂促使CLST—0.7陶瓷烧结温度降低了200~300℃,并保持良好的微波介电性能。掺杂质量分数10%CBS和4%LBSCA的CLST—0.7陶瓷经950℃烧结5h后,其εr=71.84,Q·f=1967GHz,τf=41.7×10–6/℃。  相似文献   

13.
分别以sol-gel法和固相合成法引入BCC(BaCuO2+CuO2)烧结助剂制备BaO-Nd2O3-TiO2(BNT)陶瓷采用DTA-TGA、SEM、网络分析仪等对陶瓷微观结构、性能等进行分析。结果表明:用sol-gel法引入BCC的样品经1 100℃烧结后气孔率为1.6%、εr为85.03、Q.f(测试频率2 GHz)为3576GHz,优于固相合成法1150℃烧结样品的性能。  相似文献   

14.
采用传统固相反应法制备了(1-x)(Mg0.95Zn0.05)TiO3-x(La0.44Sr0.33)TiO3(MZLST)介质陶瓷。系统研究了(La0.44Sr0.33)TiO3掺杂量对MZLST陶瓷烧结特性、相构成、微观结构和微波介电性能的影响。结果表明,掺杂少量的(La0.44Sr0.33)TiO3后,MZLST陶瓷的主晶相为(Mg0.95Zn0.05)TiO3和(La0.44Sr0.33)TiO3,随着烧结温度的升高,第二相(Mg0.95Zn0.05)Ti2O5的含量增加。当x=0.10时,MZLST陶瓷在1 285℃烧结2h获得最佳的介电常数εr=22.17,品质因数Q.f=48 471GHz(6.72GHz),谐振频率温度系数τf=-7.99×10-6/℃。  相似文献   

15.
添加质量分数为1%的H3BO3为助烧剂。研究了Ba5(Nb1–xSbx)4O15(0≤x≤0.2)陶瓷的烧结特性、显微结构和微波介电性能。结果表明:当x≤0.15时,该类陶瓷可在900℃附近烧结,并伴有少量BaSb2O6和BaB2O4相;随着x从0增加到0.2,εr和τf均有较大幅度下降;Q.f先升后降。在900℃烧成温度下,x为0.15的陶瓷获得较好的微波介电性能:εr为29.21,Q.f为13 266 GHz,τf为11×10–6℃–1,并能与Ag电极很好相容,基本满足LTCC工艺的要求。  相似文献   

16.
采用固相反应烧结法制备了ZrO2掺杂的Ba(Zn1/3Ta2/3)O3微波介质陶瓷,研究了陶瓷的烧结特性和介电性能。结果表明,ZrO2掺杂能有效降低Ba(Zn1/3Ta2/3)O3陶瓷的烧结温度,改善陶瓷的微波介电性能。当x(ZrO2)=4%时,Ba(Zn1/3Ta2/3)O3陶瓷致密化烧结温度由纯相时的1 600℃降至1 300℃,同时陶瓷材料的微波介电性能达到最佳值,即介电常数εr=34.79,品质因数与频率的乘积Q×f=148 000(8GHz),谐振频率温度系数τf=0.3×10-6/℃。  相似文献   

17.
利用X射线衍射、扫描电子显微镜等手段研究了添加La2O3-B2O3玻璃作为烧结助剂的Zn0.5Ti0.5NbO4微波介质陶瓷在低温烧结过程中的结构及微波介电性能变化。实验结果表明,适当的La2O3-B2O3玻璃添加不会影响Zn0.5Ti0.5NbO4陶瓷的相组成。添加质量分数2%的La2O3-B2O3烧结助剂有助于在烧结过程中形成液相,液相能有效加速Zn0.5Ti0.5NbO4陶瓷的低温烧结过程,实现Zn0.5Ti0.5NbO4陶瓷的致密化。在875℃烧结时,添加质量分数2%La2O3-B2O3玻璃的Zn0.5Ti0.5NbO4陶瓷具有优异的微波介电性能:εr=33.91,Q×f=16579 GHz(f=6.1 GHz),τf=-68.54×10-6/℃。  相似文献   

18.
研究了Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54)(x=0~1)陶瓷微波性能,并对其微观机理和晶体结构进行分析.随Bi_2O_3含量的增加,系统介电常数(ε)迅速增大,品质因数与频率的乘积(Q·f)逐渐减小.掺入Bi_2O_3后,系统中出现具有高ε的Bi_4Ti_3O_(12)晶相,并形成了类填满型钨青铜结构,阳离子极化增强,因此ε随Bi_2O_3含量的增加而增大.实验表明,当y=0.25~0.3时,Ba_(6-3x)(Nd_(1-y)Bi_y)_(8+2x)Ti_(18)O_(54)(x =0~1) 陶瓷具有优良的微波介电性能,其主要工艺条件和性能参数为烧结温度1 200 ℃保温4 h,ε≈102~107,Q·f≈20 000~22 000 GHz(1 GHz测量), 容量温度系数|αc|<10×10~(-6)/℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号