首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Ceramics International》2017,43(5):4235-4240
In the present work, a novel and facile process has been proposed to fabricate porous Si2N2O-Si3N4 multiphase ceramics with low dielectric constant (εr<4.0). Since silica poly-hollow microspheres could serve as the source of SiO2 and the pore-forming agent, they have been introduced into Si3N4 slurry through the gelcasting technique. This process is benefited from the liquid phase sintering reaction between SiO2 and Si3N4 with the aid of sintering additives, leading to in-situ synthesis of Si2N2O phase and porous structure. The content of silica poly-hollow microspheres has great influence on the properties of the final products. It indicates that Si2N2O phase would become the major phase when the content of silica poly-hollow microspheres was above 25 wt%. Furthermore, the micromorphology results reveal that the content of pores with many smaller aggregate microspheres increases as microspheres amount rises. As a result, along with the addition of silica poly-hollow microspheres, the bulk density decreases to 1.32±0.01 g/cm3, and open porosity ranges from 28.4±0.4% to 52.0±0.5%. Porous Si2N2O-Si3N4 multiphase ceramics prepared with 25 wt% silica poly-hollow microspheres addition possess flexural strength of 42.3±3.8 MPa, low dielectric constant of 3.31 and loss tangent of 1.93×10−3. It turns out to be an effective method to fabricate porous Si2N2O-Si3N4 composites with excellent mechanical and dielectric properties, which could be applied to radome materials.  相似文献   

2.
Fused silica ceramic has become one of the most widely used radome materials in the world since the 1970s. But its poor mechanical properties restricted its application to some extent. To improve the mechanical properties of the fused silica ceramic and keep its characteristic for radome materials, silicon nitride (Si3N4) whisker-reinforced fused silica ceramics were prepared by a slip-casting method in the work. The influence of Si3N4 whisker contents on the properties of the slurry was studied, indicating that the preferable pH values of the slurry were 4–6 and whisker contents were 10 wt.%. The flexural strength of as-prepared Si3N4w/SiO2 ceramic was about 74.35 MPa, exhibiting an increase of 7.75% over that of the pure silica sample. Its dielectric constant in the range from 8 to 12 GHz and tanδ under 10 GHz were, respectively, 3.37 and .0011. It is of great interest to find that Si3N4w/SiO2 has excellent oxidization resistance and its mass maintains even at 1270°C.  相似文献   

3.
《Ceramics International》2023,49(18):29433-29448
Stable slurries for Si3N4-bonded SiC refractories for direct ink writing (DIW) were successfully prepared from a mixture of non-spherical silicon carbide (SiC) and silicon (Si) powders with an average particle size of D50 = 41.98 μm. The rheological properties and printability of slurries prepared using polyvinyl alcohol (PVA; 4–16 wt %) or hydroxypropyl methylcellulose (HPMC, 0.5–2 wt.%) were investigated with the effect of sintering temperature on the mechanical performance, phase, and microstructure of Si3N4-bonded SiC refractory products. The results indicated that slurries prepared with the HPMC solution showed better printability than those prepared with the PVA solution because colloidal films formed by HPMC in slurries play a role in encasing particles, preventing solid−liquid separation and contributing to plasticity and lubrication, which guarantees the smooth extrusion and homogeneity of slurries. The successful printing of SiC–Si slurries is not only related to proper viscosity, yield value, and shear thinning characteristics but it is also crucial for maintaining the homogeneity of slurries under extrusion pressure. Optimal SiC–Si slurries containing 52 vol % SiC–Si and 1.5 wt% HPMC exhibited proper viscosity, shear thinning, and homogeneity characteristics during printing. The obtained specimens achieved the best printing performance with height and section retention rates of 98.7% and 97.6%, respectively. When sintered at 1450 °C, Si3N4 fibres grow further and reach a diameter of 342.5 nm, the nitriding rate is 92.43%, the fibres tend to form a full network structure, and the mechanical properties of Si3N4-bonded SiC products are the best.  相似文献   

4.
《Ceramics International》2023,49(18):29699-29708
Si3N4-SiO2 ceramics are considered as the preferred high-performance wave-transmitting material in the aerospace field. However, traditional fabrication methods for Si3N4-SiO2 ceramics have the disadvantages of high cost and complicated fabrication process. In this paper, Si3N4-SiO2 ceramics with excellent mechanical and dielectric properties were fabricated by digital light processing-based 3D printing combined with oxidation sintering. Firstly, the curing thickness and viscosity of slurries with different solid loadings for vat photopolymerization-based 3D printing were studied. Then, the effects of the sintering temperature on the linear shrinkage, phase composition, microstructure, flexural strength, and dielectric properties of Si3N4-SiO2 ceramics, and the influences of solid loading on them were explored. The curing thickness and viscosity of the slurry with a solid loading of 55 vol% were 30 μm and ∼1.5 Pa‧s, respectively. The open porosity and the flexural strength of Si3N4-SiO2 ceramic with a solid loading of 55 vol% were 4.3 ± 0.61% and 76 ± 5.6 MPa, respectively. In the electromagnetic wave band of 8–18 GHz, the dielectric constant of Si3N4-SiO2 ceramics was within the range of less than 4, and the dielectric loss remained below 0.09. The method of digital light processing-based 3D printing combined with oxidation sintering can be further extended in the preparation of Si3N4-based structure-function integrated ceramics.  相似文献   

5.
6.
Si2N2O composites were achieved via direct ink writing technique and pressureless sintering. The design and optimization of inks and the effect of mass ratio of Si3N4 and SiO2 on the phase composition, microstructure, mechanical properties and dielectric properties of composites were systematically investigated. The inks exhibit superior stability and printability. Increasing SiO2 content facilitated densification and enhancement of mechanical property. The generation of β-Si3N4 and Si2N2O and the nucleation of cristobalite were restrained by high content SiO2. The ceramic composites with the flexural strengths from 74.1MPa to 104.9MPa and low dielectric constant (≤4.68) were fabricated. This strategy provides a systematic reference for synthesis of high-performance porous Si2N2O composites based on the DIW.  相似文献   

7.
Digital light processing 3D printing can be applied to fabricate complex silicon nitride (Si3N4) components. However, because of the surface hydroxyl groups and large refractive index, it is still a foremost challenge to realize a stable photosensitive Si3N4 slurry with combined benefits of low viscosity and large curing depth. In this study, we propose a new formulation strategy to prepare Si3N4 slurry. Starting from the optimization of monomer ratio, we have systematically optimized powder particle size, dispersant and photoinitiator on the rheological properties and curing properties of Si3N4 slurry. Specifically, we have fabricated a stable photosensitive Si3N4 slurry (48 vol%) with a viscosity of 2.09 Pa s (30 s?1), a critical curing energy of 126.09 mJ/cm2 and a maximum curing depth of 80 µm. Finally, based on this optimized slurry, we have successfully obtained complex Si3N4 green body with no defect, which demonstrates great potential to fabricate arbitrary complex ceramic components for various applications.  相似文献   

8.
《Ceramics International》2020,46(11):18985-18993
As one of the 3D printing methods, layered extrusion forming (LEF) has distinct advantages to form complex configuration ceramics directly. The feasibility of using LEF to make refractory products with complex shapes was explored by this work, using water-based Al2O3–SiO2 ceramic slurry and specially equipped device. By measuring rheological parameters, the effects of binder addition, dispersant addition and volume proportion of the solid portion composed of α-Al2O3 ultrafine powder (92 wt%) and silica fume (8 wt%) on rheological behavior of the slurry were investigated. The green body specimens prepared by the LEF were fired at 1400°C–1600 °C for 3h. The influence of firing temperature on phase composition, microstructure, sintering degree and comprehensive properties of the specimens was investigated. At 2.5 wt% addition of aluminum dihydrogen phosphate as binder, 0.2 wt% addition of sodium hexametaphosphate as dispersant and with solid portion between 56 vol% and 58 vol%, required pseudoplastic behavior of the slurry can be achieved, suitable for the LEF. With the increase of heating temperature, mullitization by the reaction between the α-Al2O3 ultrafine powder and silica fume becomes stronger and sintering gets enhanced, leading to improved comprehensive properties of the specimens. Fired at 1600 °C, properties in terms of bulk density 3.03g/cm3, cold compressive strength 190.5 MPa and refractoriness under load 1598 °C are achieved. Crucible slag test shows a good resistance to the glass melt corrosion. Good feasibility of fabricating some complex shaped refractory products by LEF as a novel forming approach has been confirmed by the present work.  相似文献   

9.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

10.
《Ceramics International》2021,47(18):25689-25695
The high-temperature mechanical and dielectric properties of Si2N2O ceramics are often limited by the introduction of a sintering aid. Herein, dense Si2N2O was prepared at 1700 °C by hot-pressing oxidized amorphous Si3N4 powder without sintering additives. A homogeneous network with short-range order and a SiN3O structure was formed in the oxidized amorphous Si3N4 powder during the hot-pressing process. Si2N2O crystals preferentially nucleated at positions within the SiN3O structure and grew into rod-like and plate-like grains. Fully dense ceramics with mainly crystalline Si2N2O and some residual amorphous phases were obtained. The as-prepared Si2N2O possessed a good flexural strength of 311 ± 14.9 MPa at 1400 °C, oxidation resistance at 1500 °C, and a low dielectric loss tangent of less than 5 × 10−3 at 1000 °C.  相似文献   

11.
《Ceramics International》2022,48(21):31941-31951
A dense structure of silicon nitride ceramic was fabricated by direct ink writing using aqueous suspensions. The rheology of the suspensions was carefully tailored by the particle chemical state and the ion concentrations, without the use of any organics. The surface chemical states of the Si3N4 powder were modified by calcination at 600 °C at various times. The minimum absolute value of zeta potential, calculated by the DLVO theory, was 19 mV at which the interaction was attractive interaction. Suspensions with solid volume fraction of 25–40 vol% exhibited pseudoplastic behavior with yield stresses ≥55 Pa and equilibrium storage moduli ≥ 104 Pa. These enabled suspensions to flow through the nozzle and retain the shape of the printed parts. The flexural strength of Si3N4 ceramics produced using a 40 vol% suspension was 348 MPa. This strategy provides a simple process for fabricating high-performance ceramics based on the DIW.  相似文献   

12.
Mechanical and dielectric properties of porous Si2N2O–Si3N4 in situ composites fabricated for use as radome by gel-casting process were investigated. The flexural strength of the Si2N2O–Si3N4 ceramics is 230.46 ± 13.24 MPa, the complex permittivity of the composites varies from 4.34 to 4.59 and the dissipation factor varies from 0.00053 to 0.00092 from room temperature to elevated temperature (1150 °C) at the X-band. In the porous regions, some Si2N2O fibers (50–100 nm in diameter) are observed which may improve the materials properties.  相似文献   

13.
Silicon oxynitride (Si2N2O) has been prepared from a compacted mixture of silicon and silica under high nitrogen gas using the high-temperature synthesis (SHS) process. The aim of this work was to optimise this reaction by using a preliminary treatment of the raw materials before the combustion. The SHS samples were characterised by using X-ray diffraction and SEM analyses. Rietveld refinement was performed on recorded diffractograms and a very high formation rate for Si2N2O (more than 97 wt%) at low nitrogen pressure was revealed. By studying the influence of the compacting pressure, the nitrogen pressure and the reactant mixture, a mechanism of Si2N2O formation has been suggested.  相似文献   

14.
In this study, amorphous nano-sized Si3N4 powders were surface modified by BN. Then a stable and dense Si2N2O ceramic was fabricated using the BN surface modified powders, rather than Si2N2O-Si3N4 composites usually prepared from nano-sized Si3N4 powders without surface modification. The effect of BN surface modification on phase transformation, microstructure and mechanical properties were also investigated. Si2N2O ceramics obtained by means of the present method have no residual Si, crystal SiO2 and other oxide additives, which are usually produced by other methods and may seriously influence high-temperature structural and functional applications of Si2N2O ceramics.  相似文献   

15.
《Ceramics International》2021,47(20):28218-28225
Si3N4–SiC/SiO2 composites were prepared by employing three-dimensional (3D) printing using selective laser sintering (SLS) and infiltration processing. The process was based on the infiltration of silica sol into porous SLS parts, and silicon carbide and silicon nitride particles were bonded by melted nano-sized silica particles. To optimize the manufacturing process, the phase compositions, microstructures, porosities, and flexural strengths of the Si3N4–SiC/SiO2 composites prepared at different heat-treatment temperatures and infiltration times were compared. Furthermore, the effects of the SiC mass fraction and the addition of Al2O3 and mullite fibers on the properties of the Si3N4–SiC/SiO2 composites were investigated. After repeated infiltration and heat treatment, the flexural strength of the 3D-printed Si3N4–SiC/SiO2 composite increased significantly to 76.48 MPa. Thus, a Si3N4–SiC/SiO2 composite part with a complex structure was successfully manufactured by SLS and infiltration processes.  相似文献   

16.
《Ceramics International》2020,46(7):8725-8729
Si/SiO2 composite billets were prepared using a low-toxicity gel system, and the resulting billets were sintered at high temperature in nitrogen to synthesize Si2N2O in the central position of the fused silica ceramic matrix. The influences of in situ synthesized Si2N2O on the microstructure and mechanical properties of fused silica ceramics were studied. The results show that Si/SiO2 composite billets can be used to synthesize spike-like and fibrous Si2N2O in situ in nitrogen at 1450 °C. Si2N2O synthesized in situ can improve the mechanical properties and microstructure of quartz ceramics. When the Si/SiO2 composite billet is sintered in nitrogen at 1450 °C for 2 h, the volume density and bending strength of the quartz ceramics can reach 2.36 g/cm3 and 114.37 MPa, respectively.  相似文献   

17.
A novel ZrSi2–MgO system was used as sintering additive for fabricating high thermal conductivity silicon nitride ceramics by gas pressure sintering at 1900°C for 12 hours. By keeping the total amount of additives at 7 mol% and adjusting the amount of ZrSi2 in the range of 0-7 mol%, the effect of ZrSi2 addition on sintering behaviors and thermal conductivity of silicon nitride were investigated. It was found that binary additives ZrSi2–MgO were effective for the densification of Si3N4 ceramics. XRD observations demonstrated that ZrSi2 reacted with native silica on the Si3N4 surface to generate ZrO2 and β-Si3N4 grains. TEM and in situ dilatometry confirmed that the as formed ZrO2 collaborated with MgO and Si3N4 to form Si–Zr–Mg–O–N liquid phase promoting the densification of Si3N4. Abnormal grain growth was promoted by in situ generated β-Si3N4 grains. Consequently, compared to ZrO2-doped materials, the addition of ZrSi2 led to enlarged grains, extremely thin grain boundary film and high contiguity of Si3N4–Si3N4 grains. Ultimately, the thermal conductivity increased by 34.6% from 84.58 to 113.91 W·(m·K)−1 when ZrO2 was substituted by ZrSi2.  相似文献   

18.
Continuous Si3N4 fiber reinforced SiNO matrix composites (Si3N4 f/SiNO composites) were innovatively prepared for long-time high-temperature resistant wave-transparent materials of hypersonic aircraft. The microstructure, high-temperature mechanical and dielectric properties of Si3N4 f/SiNO composites were investigated in detail. The as-fabricated Si3N4 f/SiNO composites have homogeneous SiNO matrix distribution for the special winding process, which is beneficial for the mechanical strength and wave-transparent properties. The average tensile strength and flexural strength at room temperature is 87.8 MPa and 171.2 MPa respectively, which suggests Si3N4 f/SiNO composites have excellent mechanical strength. The tensile strength value decreases to 54.6 MPa after heat-treated at 1000 ℃ for the surface reactions between the SiNO matrix and Si3N4 fibers. After heat-treated at 1550 ℃, the composites have the tensile strength value of 24.2 MPa for the high strength retention rate of Si3N4 fibers at this temperature. Si3N4 f/SiNO composites have excellent room temperature dielectric properties and excellent dielectric stability in different frequency bands (7–18 GHz). The dielectric constant values vary from 3.69 to 3.75 while the dielectric loss attains the order of 10?3. The dielectric constants and dielectric loss of Si3N4 f/SiNO composites are relatively stable from RT to 800 ℃. The as-fabricated Si3N4 f/SiNO composites that have excellent high temperature resistance and dielectric properties are the ideal high temperature wave-transparent composites.  相似文献   

19.
Robust super-hydrophobic ceramic membranes consisting of layered structure Si2N2O grains and organosilane-derived inorganic nanoparticles were successfully fabricated and employed for membrane distillation. First, phase inversion and sintering method were used to prepare porous Si2N2O membranes. The slurry composition and sintering temperature were optimized to obtain a pure phase Si2N2O membrane with high bending strength, tailored average pore size, and high permeability. Then, the Si2N2O membranes were modified with organosilane-derived inorganic nanoparticles through ammonolysis and pyrolysis reactions. Due to the micro and nano-hierarchical rough structures and the presence of -Si-CH3 groups, the membranes showed super-hydrophobicity with a water contact angle of 152 ± 1°. Finally, the membranes were applied to desalinate seawater by sweeping gas membrane distillation. A stable water flux of 76 ± 0.9 L/(m2 day) with a salt rejection of > 99% was recorded during 30 h distillation test at 75 °C, demonstrating the stability and durability of the membranes.  相似文献   

20.
《Ceramics International》2016,42(8):9921-9925
This study investigated the effect of SiO2 content in the Y2O3–Al2O3 additive system on the microstructure, mechanical and dielectric properties of silicon nitride (Si3N4) ceramics. The total sintering additive content was fixed at 8 wt% and the amount of SiO2 was varied from 0 to 7 wt%. The crystalline phases of the samples were determined by X-ray diffraction analysis. Complete α-to-β transformation of the Si3N4 occurred during sintering of all of the samples, which indicated that the phase transformation was unaffected by the SiO2 content. However, the microstructures showed that the aspect ratio of the β-Si3N4 grains decreased and the residual porosity increased with increasing SiO2 content. Additionally, the flexural strength and the dielectric constant decreased with increasing SiO2 content because of the residual porosity and the formation of the Si2N2O phase via a reaction of SiO2 with Si3N4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号