首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Ceramics International》2020,46(6):7550-7558
Anorthite-based ceramics were produced entirely from coal fly ash and steel slag. The effect of the CaO/SiO2 ratio (0.12–0.8) on the phase transitions was examined by adding steel slag to coal fly ash in the range of 10–50 wt%, and a temperature range of 900–1200 °C. The influence of CaO/SiO2 and sintering temperatures on the technological properties were assessed by response surface methodology (RSM) and correlated with the phase changes. The results revealed that anorthite was the main phase for the CaO/SiO2 ratio ranging from 0.12 to 0.56, while at 1200 °C, a ratio of 0.8 involved a high content of gehlenite. RSM showed that the CaO/SiO2 ratio was the main influencing factor on the density, while the variation of apparent porosity and compressive strength were more affected by sintering temperature. The crystallisation of the anorthite phase significantly enhanced the properties of the obtained ceramics, whereas the appearance of gehlenite reduced the mechanical strength. The optimum conditions to fabricate anorthite-based ceramics with suitable properties were found to be a CaO/SiO2 ratio of 0.46 and a temperature of 1188 °C. The optimised anorthite-based ceramic exhibited a low thermal conductivity (0.39 W/m.K) and a dielectric constant of 6.03 at 1 MHz, along with a compressive strength of 41 MPa, which makes this sample a potential candidate for insulator applications.  相似文献   

2.
In order to study the performance and feasibility of magnesia-alumina spinel (MgAl2O4) ceramics for thermal storage in solar thermal power generation, MgAl2O4 was prepared by theoretical composition using α-Al2O3 as aluminium source, fused magnesia, magnesite, and light burned magnesia as different magnesium sources and kaolin as additive. The effects of magnesium source and the additive on sintering properties, thermal shock resistance and thermal properties of MgAl2O4 ceramics were researched. The results shown sample A1 (with fused magnesia) sintered at 1670°C possessed the optimum comprehensive properties, the bending strength increased by 7.71% after 30 thermal shock times (room temperature-1000°C, air cooling), the specific heat capacity was 1.05 J/ (g·K). Therefore, the MgAl2O4 ceramics exhibited great potential in high-temperature thermal storage material.  相似文献   

3.
The employment of solar energy in recent years has reached a remarkable edge. It has become even more popular as the cost of fossil fuel continues to rise. Energy storage system improves an adjustability and marketability of solar thermal and allowing it to produce electricity in demand. This study attempted to prepare cordierite/mullite composite ceramics used as solar thermal storage material from calcined bauxite, talcum, soda feldspar, potassium feldspar, quartz, and mullite. The thermal physical performances were evaluated and characterized by XRD, SEM, EPMA, and EDS. It was found that the optimum sintering temperature was 1280°C for preparing, and the corresponding water adsorption was 11.25%, apparent porosity was 23.59%, bulk density was 2.10 mg·cm?3, bending strength was 88.52 MPa. The residual bending strength of specimen sintered at 1280°C after thermal shock of 30 times decreased to be 57 MPa that was 36% lower than that before. The thermal conductivity of samples sintered at 1280°C was tested to be 2.20 W·(m·K)?1 (26°C), and after wrapped a PCM (phase change materials) of K2SO4, the thermal storage density was 933 kJ·kg?1 with the temperature difference (ΔT) ranged in 0‐800°C. The prepared cordierite/mullite composite ceramic was proved to be a promising material for solar thermal energy storage.  相似文献   

4.
《应用陶瓷进展》2013,112(3):147-152
Abstract

Mullite ceramic, as one of high performance thermal storage ceramics for solar thermal power generation systems, was in situ fabricated via semidry pressing and pressureless sintering in the air. Andalusite (57–68 wt-%) and calcined bauxite (24–29 wt-%) were used as the raw materials, with kaolin and a tiny of boric acid being added to promote the densification and improve the mechanical properties. The best physical properties and thermal shock resistance were obtained on an optimum A3 sample sintered at 1600°C for 3 h, i.e. a bending strength of 120·44 MPa and 30 cycles thermal shock cycling without cracking (wind cooling from 1000°C to room temperature) with a loss of bending strength of 8·7%.  相似文献   

5.
High-temperature properties including compressive strength, thermal shock behavior, and thermal conductivity of porous anorthite ceramics with high specific strength were tested and analyzed. The results showed that the prepared materials merit high-temperature compressive strength, thermal stability, and conductivity. With the appropriate fabrication parameters, even though containing 0.33 g/cm3 bulk density and 88.2% porosity, its compressive strength could reach 2.03 MPa at 1000°C, 147% of that at room temperature; the residual strength ratio kept as 114.7% after a thermal shock at 1200°C. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that anorthite grains refinement and intergranular voids filling by liquid phase were main factors for the high strength. From room temperature to 1200°C, its thermal conductivity only varied from 0.085 to 0.258 W·(m·K)−1. High porosity, a large number of nanoregions in anorthite grains and amorphous phase in grain boundary were main reasons for low thermal conductivity.  相似文献   

6.
《Ceramics International》2016,42(12):13525-13534
Cordierite-mullite-corundum composite ceramics for solar heat transmission pipeline were fabricated via pressureless sintering at a low sintering temperature with added Sm2O3. The effects of Sm2O3 on sintering behaviors, mechanical property, phase transformation, microstructure, thermal shock resistance and thermal conductivity of the composite ceramics were investigated. TEM analysis results demonstrated that Sm3+ located in glass and grain boundaries to facilitate the densification via the liquid-phase sintering mechanism and improve bending strength by grain refinement, respectively. Proper addition (3 wt%) of Sm2O3 could promote the crystallization of cordierite, and improve thermal shock resistance of the composite ceramics with an increasing rate of 16.70% for bending strength after 30 thermal shock cycles (air cooling from 1100 °C to RT). The composite ceramics possessed a superior thermal shock resistance, where a large amount of particles were formed to suppress crack initiation and propagation during thermal shock. Cordierite-mullite-corundum composite ceramics with proper Sm2O3 addition (3 wt%) had a lower thermal conductivity than that of composite ceramics without Sm2O3 addition by strengthening the scattering of phonon, which could reduce the heat loss during solar heat transmission process.  相似文献   

7.
《Ceramics International》2022,48(2):1820-1826
High-temperature thermal storage materials have received urgent attention for efficient thermal transfer in solar thermal power generation. Corundum ceramics doped with Fe2O3 and TiO2 were prepared via a pressureless sintering. A Fe2O3–TiO2 system with different Fe2O3/TiO2 ratios was applied to corundum ceramics. Phase composition, microstructural evolution, sintering properties, high temperature resistance and thermophysical properties were evaluated. The results indicated that Fe2O3 and TiO2 rendered the grains highly active and enhanced the bonding between grains due to existing stably in the lattice of corundum. In addition, decrease in the Fe2O3/TiO2 ratio led to a new phase of FeAlTiO5, which refined the grains. These effects gave the samples good sintering properties and thermal shock resistance, but the thermal expansion coefficient mismatch between FeAlTiO5 and corundum deteriorated the high-temperature (1300 °C) stability. Formula C1 (Fe2O3/TiO2 ratio of 9:1) sintered at 1600 °C had the optimum comprehensive properties, possessing a bending strength loss rate of 1.54% after 30 cycles of thermal shock (1100 °C-room temperature, air cooling) and a constant strength retention rate of approximately 71.34% after 90 h high-temperature cycle. The corresponding thermal conductivity and specific heat capacity were 18.81 W/(m·K) and 1.02 J/(g·K) at 25 °C, which was suitable as a high-temperature thermal storage material.  相似文献   

8.
For lowering sintering temperature of mullite/Al2O3 composite ceramics for solar thermal transmission pipeline, kaolin, potassium feldspar, quartz, and γ‐Al2O3 were used as raw materials to in situ synthesize the composite ceramics with pressureless sintering method. Densification, mechanical properties, thermal expansion coefficient, thermal shock resistance, phase composition, and microstructure were investigated. The experiment results demonstrated that the introduction of potassium feldspar and quartz decreased the lowest sintering temperatures greatly to 1300°C. The optimum sample A3 sintered at 1340°C obtained the best performances. The water absorption, apparent porosity, bulk density, bending strength, and thermal expansion coefficient of A3 were 0.04%, 0.12%, 2.71 g/cm3, 94.82 MPa, and 5.83 × 10?6/°C, respectively. After 30 thermal shock cycles (wind cooling from 1100°C to room temperature), no cracks were observed on the surfaces of the sample, and the bending strength increased by ?7.96%. XRD analysis indicated that the main phases of samples before and after 30 thermal shock cycles were consistently mullite, corundum, and α‐cristobalite, while the content of mullite increased after thermal shock. SEM micrographs illustrated that the mullite grains growth and micro‐cracks appeared after thermal shock endowed the composite ceramics with excellent thermal shock resistance.  相似文献   

9.
《Ceramics International》2016,42(12):13547-13554
Cordierite-spodumene composite ceramics with 5, 10, 15 wt% spodumene used for solar heat transmission pipeline were in-situ prepared via pressureless sintering from kaolin, talc, γ-Al2O3 and spodumene. Effects of spodumene on densification, mechanical properties, thermal shock resistance, phase composition and microstructure of the composite ceramics were investigated. The results showed that spodumene used as flux material decreased the sintering temperature greatly by 40–80 °C, and improved densification and mechanical properties of the composite ceramics. Especially, sample A3 with 10 wt% spodumene additive sintered at 1380 °C exhibited the best bending strength and thermal shock resistance. The bending strengths of A3 before and after 30 thermal shock cycles (wind cooling from 1100 °C to room temperature) were 102.88 MPa and 96.29 MPa, respectively. XRD analysis indicated that the main phases of the samples before 30 thermal shock cycles were α-cordierite, α-quartz and MgAl2O4, and plenty of β-spodumene appeared after thermal shock. SEM micrographs illustrated that the submicron β-spodumene grains generated at the grain boundaries after thermal shock improved the thermal shock resistance. It is believed that the cordierite-spodumene composite ceramics can be a promising candidate material for heat transmission pipeline in the solar thermal power generation.  相似文献   

10.
The effect of sintering temperature on the mechanical and thermal properties of SiC ceramics sintered with Al2O3–Y2O3–CaO without applied pressure was investigated. SiC ceramics containing A2O3–Y2O3–CaO as sintering additives can be sintered to >97% theoretical density at temperatures between 1750°C and 1900°C without applied pressure. A toughened microstructure, consisting of relatively large elongated grains and relatively small equiaxed grains, has been obtained when sintered at temperatures as low as 1800°C for 2 h in an argon atmosphere without applied pressure. The achievement of toughened microstructures under such mild conditions is the result of the additive composition. The thermal conductivity of the SiC ceramics increased with increasing sintering temperature because of the decrease in the lattice oxygen content of the SiC grains. Typical sintered density, flexural strength, fracture toughness, hardness, and thermal conductivity of the 1850°C‐sintered SiC, which consisted of 62.2% 4H, 35.7% 6H, and 2.1% 3C, were 99.0%, 628 MPa, 5.3 MPa·m1/2, 29.1 GPa, and 80 W·(m·K)?1, respectively.  相似文献   

11.
《Ceramics International》2023,49(8):12435-12442
Transparent calcium oxide (CaO) ceramic was successfully fabricated by pressureless vacuum sintering technique with 0.5 at% YF3 as the sintering additive. In consideration of the hydrolysis of CaO, the precursor powders were calcined at 600 °C. Within the sintering temperature range of 1150–1450 °C, the effect of YF3 additive on the phase structure, relative density, transmittance, and microstructure of CaO ceramics was studied. Benefiting from the assisted liquid-phase sintering mechanism and vacancy diffusion mechanism of YF3, full-dense (3.35 g/cm3) YF3-doped CaO transparent ceramic was fabricated at 1350 °C with high thermal conductivity of 15.42 W/(m·K). The in-line transmittance attained 47.10% at the wavelength of 1200 nm. Moreover, the hydrolysis resistance was extremely enhanced due to the pore-free structure. Compared to the CaO ceramic with low relative density of 78.66%, the weight gain of full-dense CaO ceramic greatly decreased from 22% to 1.2% within 35 days.  相似文献   

12.
《Ceramics International》2019,45(15):18865-18870
Near-net-shape mullite ceramics with high porosity were prepared from ultra-low cost natural aluminosilicate mineral kaolin as raw material and polystyrene micro-sphere (PS) as pore-forming agent. Microstructure, flexural strength, thermal conductivity and dielectric properties of the ceramics were systematically researched. Results show that the porous mullite ceramics possess fibrous skeleton structure formed by a large quantity of interlocked mullite whiskers, which results in good mechanical properties and low-to-zero sintering shrinkage. Flexural strength of the porous mullite ceramics can be up to 41.01 ± 1.12 MPa, even if the porosity is as high as 62.44%. The dielectric constant and loss tangent of the porous mullite ceramics at room temperature are lower than 2.61 and 5.9 × 10−3, respectively. Besides, dielectric constant is very stable with the rising of temperature, and the dielectric loss can be consistently lower than 10−2 when the temperature is not higher than 800 °C. In addition, thermal conductivity at room temperature is as low as 0.163 W/m/K when the porosity of mullite ceramics is 80.05%. The infiltration of SiO2 aerogels (SiO2 AGs) can further decrease the thermal conductivity to 0.075 W/m/K, while has just little effects on the dielectric properties. Excellent mechanical, thermal and dielectric properties show that the porous mullite ceramics have potential applications in radome fields. The porous mullite ceramics prepared from kaolin not only have low cost, but also can achieve near-net-shape.  相似文献   

13.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   

14.
Cordierite-mullite composite ceramic was synthesized in situ by semidry pressing and pressureless sintering from andalusite, kaolin, γ-Al2O3, talc, potassium feldspar, and albite in air. The effects of composition and sintering temperature on the density, bending strength, thermal shock stability, crystal phases, and microstructure of the specimens were studied. The results show that specimen B2 (the theoretical content of cordierite was 20 wt%) has excellent performance, that is, a bending strength of 104.59 MPa, 30 cycles of thermal shock resistance without cracking, and a loss rate of 13.12%. X-ray diffractometer (XRD) analysis and scanning electron microscope (SEM) micrographs showed that spherical cordierite crystals were grown on the surface of the mullite, therefore, the specimen possessed a superior bending strength and thermal shock resistance, where a great number of granules combined to restrain crack initiation as well as propagation over time during the thermal shock test. The thermal conductivity of specimen B2 was determined to be 3.83 W/(m·K) (36°C), and the sensible heat storage density was 1136 kJ/kg, with the temperature difference (ΔT) ranging from 0 to 800°C. Consequently, the cordierite-mullite composite is a potentially applicable material for solar thermal storage.  相似文献   

15.
For lowering the sintering temperature of silicon carbide ceramics used for solar thermal energy storage technology, O'‐Sialon and silicon nitride were employed as composite phases to construct Sialon‐Si3N4‐SiC composite ceramics. The composite ceramics were synthesized using SiC, Si3N4, quartz, and different alumina sources as starting materials with noncontact graphite‐buried sintering method. Influences of alumina sources on the physical properties and thermal shock resistance of the composites were studied. The results revealed that the employment of O'‐Sialon and silicon nitride could decrease the sintering temperature greatly to 1540°C. The optimum formula G2 prepared from mullite as alumina source achieved the best performances: 66.7 MPa of bending strength, 10.0 W/(m·K) of thermal conductivity. The composition parameter x = 0.4 of O'‐Sialon decreased to 0.04 after 30 cycles thermal shock, and the bending strength increased with a rate of 11.0% due to the increase of O'‐Sialon grain size, and the optimization of microstructure caused by the transformation of O'‐Sialon grains and densification within the samples. The good thermal shock resistance makes the composites suitable for the use as thermal storage materials of concentrated solar power generation.  相似文献   

16.
《Ceramics International》2016,42(16):18128-18135
Shale was used as main raw material for developing thermal storage ceramics. The samples were fabricated via semi-dry pressing followed by pressureless sintering. The result showed that the sample (75% shale, 10% kaolin, 10% potash feldspar and 5% soda feldspar) fired at 1080 °C exhibited the best comprehensive performance. Ocular examination reveals that no cracks were observed after 30 cycle times thermal shock tests (wind cooling from 600 °C to room temperature). The results presented that the high bending strength remained after 20 cycle times thermal shock tests but plummeted at the thirtieth time. Other properties were given as follows: bulk density: 2.60 g/cm3; thermal conductivity: 2.33 W/(m °C); and heat storage density: 578.50 mJ/m3. XRD analysis indicated that the quartz and hematite were the main solid phases in the sample. Some isolated pores, quartz crystals, granular hematite crystals and needle-like mullite crystals were observed in the matrix according to the SEM (Scanning Electron Microscope) analysis. More pores were found with temperature rizing according to SEM analysis. The relatively high content of Fe2O3 contributed to the formation of the vitreous phase and favored the densification. Overall, the introduction of shale effectively reduced the firing temperature and performed the better thermal storage properties.  相似文献   

17.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

18.
SiO2-Al2O3-CaO-based glass (10–60 wt%)/mullite composites were investigated for the LTCC and radome applications. The optimum densification temperatures decreased from 1550°C (10 wt% glass) to 1400°C (30 wt% glass) by means of liquid-phase sintering, and to 850°C–825°C (50–60 wt% glass) by means of viscous phase sintering. XRD analysis showed that mullite was the main phase as well as in situ crystallized anorthite after 825°C. The composite with 20 wt% glass was a suitable candidate for the radome applications (bulk density = 2.86 g/cm3 after sintering at 1450°C, dielectric constant (loss) = 7.12 (0.0025) at 5 MHz, thermal expansion coefficient = 4.27 ppm/°C between 25°C and 800°C, thermal shock resistance parameter = 162°C), and the composite with 50 wt% glass was a suitable candidate for the low-temperature cofired ceramic applications (bulk density = 2.64 g/cm3 after sintering at 850°C, dielectric constant (loss) = 6.79 (0.0043) at 5 MHz, thermal conductivity = 2.11 W/m⋅K at 25°C, and thermal expansion coefficient = 3.93 ppm/°C between 25°C and 300°C).  相似文献   

19.
In this work, porous ZrC-SiC ceramics with high porosity and low thermal conductivity were successfully prepared using zircon (ZrSiO4) and carbon black as material precursors via a facile one-step sintering approach combining in-situ carbothermal reduction reaction (at 1600 °C for 2 h) and partial hot-pressing sintering technique (at 1900 °C for 1 h). Carbon black not only served as a reducing agent, but also performed as a pore-foaming agent for synthesizing porous ZrC-SiC ceramics. The prepared porous ZrC-SiC ceramics with homogeneous microstructure (with grain size in the 50–1000 nm range and pore size in the 0.2–4 µm range) possessed high porosity of 61.37–70.78%, relatively high compressive strength of 1.31–7.48 MPa, and low room temperature thermal conductivity of 1.48–4.90 W·m?1K?1. The fabricated porous ZrC-SiC ceramics with higher strength and lower thermal conductivity can be used as a promising light-weight thermal insulation material.  相似文献   

20.
The influence of varying the CaO/MgO ratio on the structure and thermal properties of CaO–MgO–SiO2–P2O5–CaF2 glasses was studied in a series of eight glass compositions in the glass forming region of diopside (CaMgSi2O6)–fluorapatite [Ca5(PO4)3F]–wollastonite (CaSiO3) ternary system. The melt-quenched glasses were characterized for their structure by infrared spectroscopy (FTIR) and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy. Silicon is predominantly present as Q2 (Si) species, while phosphorus tends to coordinate in orthophosphate environment. The sintering and crystallization parameters of the glasses were obtained from differential thermal analysis (DTA) while crystalline phase fractions in the sintered glass–ceramics were analyzed by X-ray diffraction adjoined with Rietveld refinement. Diopside, fluorapatite, wollastonite and pseudowollastonite crystallized as the main crystalline phases in all the glass–ceramics with their content varying with respect to variation in CaO/MgO ratio in glasses. The implications of structure and sintering behaviour of glasses on their bioactivity were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号