首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
用差示扫描量热法对亚甲基双邻氯苯胺(MOCA)/环氧树脂体系的等温固化反应进行了研究。用Kamal自催化模型分析MOCA/环氧树脂体系的等温固化动力学,结果表明,该固化过程具有自催化反应的特征,固化过程符合Kamal自催化模型。采用非模型拟合法中的非线性Vyazov kin(NLV)法计算该体系的活化能。  相似文献   

2.
2-甲基咪唑/环氧树脂体系的固化动力学研究   总被引:1,自引:0,他引:1  
利用等温DSC法对E-51环氧树脂/2-甲基咪唑(2-MI)体系的固化动力学进行了研究,拟合得到n级固化模型、自催化模型及Kamal复合模型方程中的各个参数值,以确定固化模型。研究表明:E-51/2-MI体系的固化过程分为2个阶段,即诱发阶段和加成反应,其固化反应兼具n级固化与自催化的特征,符合Kamal复合模型。  相似文献   

3.
通过非等温和等温差式扫描量热法(DSC)对硫磺(S)固化2,2’-二烯丙基双酚A型环氧树脂(DADGEBA)的动力学进行了研究。从DSC曲线两个放热峰得知,DADGEBA/S体系是两步反应,通过等温DSC分析确定该体系在温度高于170℃低于210℃时满足Kamal自催化模型,通过非等温DSC确定该体系在温度高于210℃时,满足n级反应模型,得到了动力学模型的相关参数。DADGEAB/S体系在整个固化反应过程中满足两种动力学机理函数,这与DADGEBA/S体系双固化机理相符。  相似文献   

4.
用2-乙基-4-甲基咪唑改性的氧化石墨烯(GO-IPDI-EMI)催化固化双氰胺阻燃环氧树脂。通过Friedman法发现,从反应开始阶段GO-IPDI-EMI就能使反应活化能降低,非等温热流图谱的峰顶温度Tp值和起始温度Tonset值都随着改性氧化石墨烯含量的增加而降低。采用Kamal模型计算得到等温固化速率常数k2和k1,求得相对应的自催化活化能Ea2以及非催化活化能Ea1,添加改性氧化石墨烯的双氰胺环氧阻燃体系活化能下降明显。流变和量热法综合分析表明,改性氧化石墨烯对双氰胺阻燃环氧树脂的固化起到了很好的催化作用。  相似文献   

5.
用2-乙基-4-甲基咪唑改性的氧化石墨烯(GO-IPDI-EMI)催化固化双氰胺阻燃环氧树脂。通过Friedman法发现,从反应开始阶段GO-IPDI-EMI就能使反应活化能降低,非等温热流图谱的峰顶温度Tp值和起始温度Tonset值都随着改性氧化石墨烯含量的增加而降低。采用Kamal模型计算得到等温固化速率常数k2和k1,求得相对应的自催化活化能Ea2以及非催化活化能Ea1,添加改性氧化石墨烯的双氰胺环氧阻燃体系活化能下降明显。流变和量热法综合分析表明,改性氧化石墨烯对双氰胺阻燃环氧树脂的固化起到了很好的催化作用。  相似文献   

6.
为研究风电叶片用环氧树脂的固化反应进程,采用等温DSC法测得了树脂体系在60℃、70℃、80℃下的等温放热曲线,并通过Matlab拟合功能对n级动力学模型、自催化模型和Kamal模型三种基本模型进行了分析,结果表明该树脂体系符合Kamal模型。在对Kamal模型计算结果与实验数据的对比中发现,计算结果在后段出现了偏高的现象,因此必须考虑扩散效应的影响。在对两个扩散控制Kamal模型的对比中可以发现Chern模型结果较优,该模型对转折点附近的拟合结果较为符合实际。  相似文献   

7.
用差示扫描量热法研究了IPDA/环氧树脂体系的等温固化动力学,用Kamal方程对该体系的等温固化曲线进行拟合。结果表明:环氧树脂的固化过程包含自催化机理,加入IPDA没有改变固化反应机理。同一温度下反应速率常数k_2大于k_1,并且k_1、k_2随着固化温度的上升而增大。  相似文献   

8.
采用聚丙二醇二缩水甘油醚(PPGDGE)对环氧树脂进行了改性,力学性能测试表明PPGDGE可在基本不影响环氧树脂弯曲性能的同时有效地提高环氧树脂抗冲击性能,当添加量为20%时,环氧树脂冲击强度可达31.84 kJ/m2,相比于纯环氧树脂提高了70.5%。通过对EP/20%PPGDGE/DDS体系的非等温差示扫描量热(DSC)测试及活化能的求解,表明稀释剂的加入几乎不影响体系的固化,仅活化能略微降低。等温DSC固化动力学研究表明,固化反应遵循自催化反应机理,可使用Kamal模型较好地拟合。  相似文献   

9.
搪塑模具制备过程中电镀用环氧树脂芯模的固化过程对于搪塑模具的制备至关重要。今采用流变学的的方法,对电镀用环氧树脂芯模的固化过程进行了研究。环氧树脂芯模在固化过程中,双酚A型环氧树脂与多元胺固化剂进行交联反应,固化程度逐渐增大。固化程度先缓慢增加,然后迅速增加,最后缓慢增加接近最大值,芯模完全固化。同时,温度对固化速率影响也很大。温度越高,速率越大;温度越低,速率越小,完全固化所用时间也就越长,则树脂芯模可操作加工时间也就越长。研究建立了电镀用环氧树脂的固化反应动力学方程,得到温度与固化速率的关系,同时获得固化反应的活化能,结果表明电镀用环氧树脂的固化反应动力学符合Kamal自催化动力学模型。  相似文献   

10.
用等温差示扫描量热法(DSC)在三个不同的固化温度下研究了不同含量端羧基液态橡胶(CTBN)改性环氧树脂的等温固化过程,考察了不同CTBN含量对环氧树脂固化动力学的影响。通过Kamal方程对不同含量CTBN改性环氧树脂固化过程数据进行拟合,得到反应速率常数k1、k2及反应级数m、n,计算得到反应活化能的值,结果表明CTBN质量分数由0%到20%,k1、k2逐渐增大,反应前期活化能由67.34kJ/mol增加到80.31kJ/mol,增加了19.26%,反应后期活化能由94.19kJ/mol增加到180.07kJ/mol,增加了91.18%。  相似文献   

11.
The curing kinetics and the resulting viscosity change of a two‐part epoxy/amine resin during the mold‐filling process of resin‐transfer molding (RTM) of composites was investigated. The curing kinetics of the epoxy/amine resin was analyzed in both the dynamic and the isothermal modes with differential scanning calorimetry (DSC). The dynamic viscosity of the resin at the same temperature as in the mold‐filling process was measured. The curing kinetics of the resin was described by a modified Kamal kinetic model, accounting for the autocatalytic and the diffusion‐control effect. An empirical model correlated the resin viscosity with temperature and the degree of cure was obtained. Predictions of the rate of reaction and the resulting viscosity change by the modified Kamal model and by the empirical model agreed well with the experimental data, respectively, over the temperature range 50–80°C and up to the degree of cure α = 0.4, which are suitable for the mold‐filling stage in the RTM process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2139–2148, 2000  相似文献   

12.
The curing step in resin transfer molding process involves heat transfer coupled with the curing reaction of thermoset resin. In order to examine the curing behavior under a specified cure cycle in the resin transfer molding process, numerical simulations are carried out by three-dimensional finite elements method. An experimental study for isothermal cure kinetics of epoxy resin is conducted by using differential scanning calorimetry. Kinetic parameters based on the modified Kamal model are determined from the calorimetric data for the epoxy system, and by using these parameters, numerical simulations are performed for a hat-shaped mold. It is found from the simulation results that the temperature profile and the degree of cure are well predicted for the region inside the mold. This numerical study can provide a systematic tool in the curing process to find an optimum cure cycle and a uniform distribution of the degree of cure.  相似文献   

13.
The curing kinetics and chemorheology of a low‐viscosity laminating system, based on a bisphenol A epoxy resin, an anhydride curing agent, and a heterocyclic amine accelerator, are investigated. The curing kinetics are studied in both dynamic and isothermal conditions by means of differential scanning calorimetry. The steady shear and dynamic viscosity are measured throughout the epoxy/anhydride cure. The curing kinetics of the thermoset system is described by a modified Kamal kinetic model, accounting for the diffusion‐control effect. A chemorheological model that describes the system viscosity as a function of temperature and conversion is proposed. This model is a combination of the Williams–Landel–Ferry equation and a conversion term originally used by Castro and Macosko. A good agreement between the predicted and experimental results is obtained. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3012–3019, 2003  相似文献   

14.
The cure kinetics of an epoxy resin used for the preparation of advanced polymeric composite structures was studied by isothermal differential scanning calorimetry (DSC). A series of isothermal DSC runs provided information about the kinetics of cure over a wide temperature range. According to the heat evolution behavior during the curing process, several influencing factors of isothermal curing reactions were evaluated. The results showed that the isothermal kinetic reaction of this epoxy resin followed an autocatalytic kinetic mechanism. In the latter reaction stage, the curing reaction became controlled mainly by diffusion. Cure rate was then modeled using a modified Kamal autocatalytic model that accounts for the shift from a chemically controlled reaction to a diffusion‐controlled reaction. The model parameters were determined by a nonlinear multiple regression method. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
固化体系对环氧树脂耐高温性能的影响   总被引:1,自引:0,他引:1  
针对覆铜板的耐高温要求,分别使用胺类固化剂4,4′-二氨基二苯砜(DDS)、4,4′-二氨基二苯醚(DDE)和乙二胺(EDA)固化改性双酚A型环氧树脂,研制适用于耐高温覆铜板的环氧树脂固化物。用示差扫描量热法(DSC)研究其固化过程,讨论了固化剂用量、固化剂种类及固化温度等因素对固化物玻璃化转变温度(Tg)的影响。实验结果表明,固化物耐热性最好的配比不是化学计量,而是偏离化学计量,在理论用量的基础上适当增加固化剂用量,可有效地提高固化产物的玻璃化温度Tg值;使用芳香胺类固化剂固化双酚A型环氧树脂,其固化产物有较高的玻璃化温度,可以满足覆铜板耐高温的要求。  相似文献   

16.
The isothermal curing kinetics of nanocomposite of o-cresol-formaldehyde epoxy resin (o-CFER), 3-methyl-tetrahydrophthalic anhydride (MeTHPA) with organic montmorillonite (O-MMT) were investigated by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC) using N,N-dimethyl-benzylamine as a curing accelerant. The XRD result indicates that an exfoliated O-MMT nanocomposite was obtained. The analysis of DSC data indicated that an autocatalytic behavior appeared in the first stages of the cure for the system, which could be well described by the Kamal model. In the later stages, the reaction is mainly controlled by diffusion and a diffusion factor, f(α), was introduced into Kamal's equation. In this way, the curing kinetics were predicted well over the entire range of conversion. The thermal degradation kinetics of this composite were investigated by thermogravimetric analysis (TGA), which revealed that with increasing O-MMT content, TG curves shift to higher temperature.  相似文献   

17.
The curing kinetics of epoxy nanocomposites prepared by incorporating graphene oxide (GO) and chemically reduced graphene oxide (rGO) have been studied using isothermal and nonisothermal differential scanning calorimetry. The kinetic parameters of the curing processes in these systems have been determined by a Kamal and Sourour phenomenological model expanded by a diffusion factor. The predicted curves determined using the kinetic parameters fit well with the isothermal DSC thermograms revealing the proposed kinetic equation clearly explains the curing kinetics of the prepared epoxy amine nanocomposites. Experimental and modeling results demonstrate the presence of an accelerating effect of the GO on the cure of the resin matrix. The use of rGO instead of GO resulted in a slight acceleration reaction rate due to the reduced presence of oxidation groups in rGO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44803.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号