首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
新型潜伏性M-DDM微胶囊固化剂的制备及表征   总被引:2,自引:0,他引:2  
利用E-44环氧树脂对二氨基二苯基甲烷环氧树脂固化剂(DDM)进行了改性,合成了含有羟基的E-44-DDM固化剂(M-DDM)。以所合成的M-DDM粉体为囊芯、以2,4-甲苯二异氰酸酯(TD I)为壁材单体,采用界面聚合技术,首次成功制备了一种新型聚脲M-DDM微胶囊固化剂。该微胶囊固化剂粒径分布较窄,平均粒径约为2.54μm。囊壁是TD I与囊芯粉体表面的羟基通过加成聚合反应形成的,壁厚约为100 nm。所制备的微胶囊固化剂具有优良的固化性能和潜伏性能,可以在100℃使环氧树脂E-51在1 h内固化,并且其室温潜伏期可达6个月以上。  相似文献   

2.
以2-苯基咪唑(2PZ)为芯材,苯乙烯-甲基丙烯酸共聚物(PS-co-MAA)为壁材,采用溶剂挥发技术,成功地制备了一种新型潜伏性热释放2PZ-PS-co-MAA微胶囊固化剂。通过红外光谱仪(FT-IR)、热重分析仪(TGA)、扫描电子显微镜(SEM)、粒度分析仪和差示扫描量热仪(DSC)对微胶囊固化剂的化学结构、芯材含量、表面形貌、粒径分布及固化性能等进行了表征。所制备的微胶囊固化剂表面光滑,粒径分布较窄,平均粒径约为15.60μm,壁材厚度约为0.5μm,芯材2PZ含量约为39.19%。由微胶囊固化剂与环氧树脂E-51制备的单组分胶粘剂,具有优良的固化特性和潜伏性能,可在100℃,30 min内实现固化,室温储存期可达32 d以上。  相似文献   

3.
改性2-乙基-4-甲基咪唑固化剂的胶囊化研究   总被引:1,自引:0,他引:1  
利用正丁基缩水甘油醚(BGE)对2-乙基-4-甲基咪唑(EMZ)进行了改性,合成了含有羟基的EMZ固化剂(M-EMZ).以所合成的M-EMZ为芯材、以聚醚酰亚胺(PEI)为壁材,采用乳液-溶剂蒸发技术,成功制备了M-EMZ固化剂微胶囊.该固化剂微胶囊均具有规则的球形,粒径分布较窄,平均粒径约为25μm.所制备的固化剂微胶囊具有优良的固化活性、释放性能和潜伏性能,可以在100℃下使E-51环氧树脂在2h内固化且室温储存期在3个月以上.  相似文献   

4.
采用芯材表面修饰法制备了聚脲石蜡相变微胶囊。首先在固体石蜡颗粒表面引入氨基(-NH2),制备表面氨基修饰的固体石蜡芯材,再加入2,4-甲苯二异氰酸酯(TDI)和改性胺固化剂,形成聚脲壁包覆芯材。用差示扫描量热仪、傅里叶红外光谱仪(FT-IR)和激光粒径分布仪表征了芯壁用量比以及搅拌速度对相变微胶囊结构和性能的影响。FT-IR测试结果表明,该方法成功地在固体石蜡微球的表面引入了氨基。固定转速时,随着芯壁用量比中TDI用量的增加,微胶囊相变潜热明显增加;在十八胺与TDI摩尔比相同的条件下,随着芯材制备搅拌速率的增大,微胶囊的平均粒径减小而相变潜热明显增加。当搅拌速率为800 r/min,十八胺与TDI摩尔比为1∶2时,所制备的聚脲石蜡相变微胶囊包覆完整,热稳定性好,平均粒径为18.262μm,相变潜热可达142.8 J/g,包覆率达63%以上。  相似文献   

5.
采用界面聚合法制备微胶囊相变材料,以硬脂酸丁酯为芯材,以单体2,4-甲苯二异氰酸酯(TDI)和二亚乙基三胺(DETA)反应生成的聚脲树脂为壳体,在4500r/min~5000r/min转速下制得的微胶囊平均粒径为1μm~4μm。研究了不同的芯材壁材比对微胶囊形态和包裹效率的影响,当芯材壁材比为2时包裹效率达到最大值93.2%。所制备的微胶囊表面光滑平整,具有良好的致密性,相变温度为22.98℃,相变焓为88J/g。研究发现,当DETA分两次加入时比一次性加入时质量损失率减少12%。  相似文献   

6.
三聚氰胺-甲醛相变微胶囊制备及性能   总被引:1,自引:0,他引:1  
以三聚氰胺-甲醛树脂(MF)为壁材,石蜡为芯材,通过原位聚合法制备了芯壁比分别为2∶1、3∶1、4∶1的相变微胶囊,并对微胶囊进行了傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)、差示扫描量热分析(DSC)、热重分析(TG)及热循环测试。结果表明,在制备过程中,微胶囊的壁材不与芯材发生反应,制备的微胶囊为比较完整的球形。当相变微胶囊芯壁比为4∶1时,潜热值高达到162.7 J/g,与计算值非常接近,经过100次热循环后潜热值损失3.63%;当芯壁比较小时,微胶囊的耐热性及包裹较好。  相似文献   

7.
以纳米Al_2O_3改性的三聚氰胺-尿素-甲醛树脂为壁材,以1,2-环己烷二甲酸二缩水甘油酯(DGCHD)为芯材,采用原位聚合法制备了纳米Al_2O_3改性的环氧树脂微胶囊。通过红外光谱、热失重和扫描电镜等方法对微胶囊的结构和性能进行了表征。结果表明,当壁材中加入适量的纳米Al_2O_3时,微胶囊的热稳定性和表面粗糙度均增加,且纳米Al_2O_3并不会破坏三聚氰胺-尿素-甲醛树脂预聚体的缩聚反应。当壁材中纳米Al_2O_3为3%(wt,质量分数,下同)时,微胶囊的囊芯达94.5%。  相似文献   

8.
采用原位聚合法制备了以环氧树脂(EP)为壁材,聚磷酸铵(APP)为芯材的微胶囊阻燃剂(MCAPP)。研究了不同含量的壁材对MCAPP溶解度的影响,结果发现,与未包覆的APP相比,在25℃和80℃条件下,MCAPP的溶解度都有较大幅度降低。采用傅立叶变换红外光谱(FT-IR)和透射电镜(TEM)对MCAPP进行了组成和结构表征,初步证实EP已包覆在APP颗粒表面。激光粒度的研究表明,MCAPP粒径分布变窄,平均粒径有所降低。此外,还采用热失重方法研究了APP以及MCAPP的热稳定性。  相似文献   

9.
研制了一种可室温固化的固化剂自修复微胶囊。通过优化溶剂挥发法解决室温固化剂包覆难的问题,以DG593改性固化剂为芯材,制备乙基纤维素自修复微胶囊。探讨了分散剂种类及用量、原料比、搅拌速率和反应温度等因素对微胶囊性能的影响。采用光学显微镜、扫描电子显微镜和激光粒度分析仪测定微胶囊形貌和粒径,采用傅里叶红外光谱仪分析微胶囊的化学结构。结果表明:溶剂挥发法成功制备了室温固化剂微胶囊,当分散剂为2.0%聚乙烯醇溶液,原料比为1.0∶1,搅拌速率为800r/min,反应温度为30℃时,微胶囊表面相对致密,粒径分布较为集中,粒径均值为108μm,产率最高达到87%。研究成果可为防腐涂料在室温中实现自修复提供参考。  相似文献   

10.
以一步原位聚合法制备芯材为环氧树脂(E-51),壁材为脲醛树脂(UF)的E-51-UF微胶囊。采用FTIR、SEM、TG、粒度分析仪等分别对E-51-UF微胶囊结构、表面形貌、耐热性和粒径分布进行了表征。以E-51-UF微胶囊为核,固化剂2-甲基咪唑(2-MI)为壳通过共混复合,得到E-51-UF@2-MI复合微胶囊。将E-51-UF@2-MI微胶囊填充到E-51基体中,制备了E-51-UF@2-MI微胶囊/E-51复合材料拉伸试样、弯曲试样和梯形双悬臂梁(TDCB)修复试样,并采用电子万能试验机测试其性能。分析了填充E-51-UF@2-MI微胶囊质量分数对E-51-UF@2-MI微胶囊/E-51复合材料力学性能及自修复性能的影响。结果表明:制备的E-51-UF微胶囊呈现规整球形结构,平均粒径为130 μm,耐热温度达364℃;E-51-UF@2-MI复合微胶囊质量分数为10wt%时,E-51-UF@2-MI微胶囊/E-51复合材料拉伸强度达到最大值,为31.17 MPa,弯曲强度为66.77 MPa,最大修复率为90.1%。   相似文献   

11.
用分步法制备了环氧树脂/聚氨酯(EP/PU)半IPN,通过差示扫描量热法(DSC)与动态力学分析法(DMA)研究了该半IPN的玻璃化转变行为,用扫描电镜(SEM)表征了其形态结构。结果表明,在此半IPN中,两组分聚合物的玻璃化转变温度(Tg)靠近,并伴随有第三个Tg的出现。该半IPN具有两相结构,两相连续程度随组分量的变化而变化。  相似文献   

12.
将埃洛石纳米管(HNTs)与2-羧乙基苯基次磷酸(CEPPA)复配并用于环氧树脂(EP)阻燃改性,制备了CEPPA-HNTs/EP复合材料.研究了HNTs与CEPPA的配比对CEPPA-HNTs/EP复合材料热稳定性、阻燃性及力学性能的影响.TG分析表明,CEPPA与HNTs复配可提高CEPPA-HNTs/EP复合材料...  相似文献   

13.
采用氧指数法(LOI)、垂直燃烧法(UL-94)及热重分析法(TGA)对三聚氰胺氰尿酸盐(MCA)和聚磷酸铵(APP)阻燃环氧树脂的阻燃性及热稳定性进行了研究。TGA结果表明,MCA促进成炭的作用较弱,主要在气相起到阻燃的作用。而APP的添加虽然降低了环氧树脂的初始分解温度,但当温度高于400℃时,体系具有更好的热稳定...  相似文献   

14.
为了提高环氧树脂(EP)的性能,采用具有氨基官能团的笼型倍半硅氧烷(POSS)改性.首先通过POSS与EP发生化学反应,形成有机无机杂化树脂;然后固化杂化树脂,得到POSS/EP有机无机杂化材料.文中研究了杂化树脂的凝胶特性和杂化材料的热性能,包括热变性温度(HDT)、玻璃化转变温度(Tg)和高温热分解性能.研究结果表...  相似文献   

15.
以端氨基树枝状大分子PAMAM作为环氧树脂固化剂, 通过拉伸试验、 冲击试验、 DSC、 TGA研究了配比和固化温度对PAMAM与环氧树脂E-44的固化物性能的影响。 结果表明, 最佳固化温度为140℃, 但随着固化温度升高, 配比的影响表现出不同的规律: 80℃固化时, 最佳配比为0.47, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大; 而在80℃以上固化时, 最佳配比逐渐向低配比方向移动, 140℃固化时, 最佳配比为0.28, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大。固化物的密度和体积收缩率都是配比为0.47时最大, 而热稳定性都是配比为0.28时最佳。利用滴定法测定了固化物的固化度, 结果表明, 随着固化温度的升高, 低配比体系的固化度迅速提高并接近化学计量点配比体系的固化度。   相似文献   

16.
通过溶液混合法制备了凹凸棒(ATT)/炭黑(CB)/环氧树脂(EP)复合材料。使用紫外可见光光谱仪(UV-Vis)和Zeta电位测试仪对CB和(或)ATT在丙酮溶剂中的分散稳定性进行了研究。使用扫描电子显微镜(SEM)和电阻仪分别研究了不同填料比例以及含量对EP复合材料微观结构和电阻率的影响。结果表明,ATT的加入可以有效增强CB在溶剂中的分散稳定性并促进EP基体中导电网络的形成。当CB与ATT质量比为5∶1时,复合材料的电阻率比不添加ATT时下降了2个数量级;其渗流阈值(1%)(质量分数,下同)小于具有相同填料含量的CB/EP复合材料(1.8%)。最后探讨了ATT对CB/EP复合材料电性能影响的可能机理。  相似文献   

17.
研究了聚磷酸铵(APP)以及APP两种微胶囊,即环氧树脂包覆的APP(EPAPP)和密胺甲醛树脂包覆的APP(MFAPP)在环氧树脂(EP)中阻燃性能、力学性能以及阻燃剂与EP之间的相容性。结果表明,APP在EP中具有较好阻燃效果。与未包覆的APP相比,环氧树脂和密胺甲醛树脂包覆APP(EPAPP和MFAPP)在环氧树脂(EP)中氧指数和垂直燃烧级别基本不变;但添加APP微胶囊的阻燃EP体系的力学性能都有所改善,尤其是冲击强度有较大幅度提高。表面电阻的实验发现,在EP体系中添加APP或APP微胶囊对体系绝缘性能基本上没有影响。  相似文献   

18.
采用碱氧一浴法对洋麻纤维(KF)进行精细化处理,并制备了不同混纺质量比的精细化处理KF-棉纤维(KF-CF)混纺织物及KF-CF/环氧树脂(EP)复合材料。通过纤维强度、细度测试和FTIR、TG、SEM研究了精细化处理对KF性能的影响,通过对KF-CF/EP复合材料力学性能分析得到最佳混纺质量比,探究了最佳混纺质量比KF-CF/EP复合材料在湿热及化学环境下的吸湿性能。结果表明:精细化处理后的KF直径降低了30.66%,拉伸模量提高了31.24%,柔软度提高了13.20%,热稳定性得到提高;当KF与CF混纺质量比为40∶60时,KF-CF/EP复合材料力学性能最优,拉伸强度为101.90 MPa,弯曲强度为189.64 MPa;在湿热环境下,时间越长,温度越高,KF-CF/EP复合材料的吸水率越高,碱性环境会导致KF-CF/EP复合材料吸水率提高。   相似文献   

19.
分别以沉积碳纳米管(MWCNTs)和羟基锡酸锌的石墨烯片层(GNS)纳米粒子为核、表面活性剂KH560为颈状层、聚醚胺M2070为冠状层,制备了无溶剂(GNS-MWCNTs)@M2070流体及无溶剂(GNS-ZHS)@M2070流体。将质量分数为2.0wt%的两种无溶剂纳米流体分别加入环氧树脂(EP)中,制备了无溶剂(GNS-MWCNTs)@M2070/EP和(GNS-ZHS)@M2070/EP复合材料,并对其热性能和阻燃性能进行研究。锥形量热测试结果表明,纯EP、(GNS-MWCNTs)@M2070/EP、(GNS-ZHS)@M2070/EP的火焰增长速率(FIGRA)值分别为3.682,3.118和4.391kW(m~2·s)~(-1),同时,相比(GNS-MWCNTs)@M2070/EP,含有(GNS-ZHS)@M2070的EP基复合材料较纯环氧树脂具有更低的生烟速率(SPR)、生烟总量(TSR)和一氧化碳释放量(COP)值,说明沉积有羟基锡酸锌的石墨烯片层纳米粒子为核的无溶剂纳米流体对提高环氧树脂阻燃性能更为有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号