首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller. The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.  相似文献   

2.
A controller design is proposed for a class of high order nonholonomic systems with nonlinear drifts. The purpose is to ensure a solution for the closed-loop system regulated to zero. Adding a power integrator backstepping technique and the switching control strategy are employed to design the controller. The state scaling is applied to the recursive manipulation. The simulation example demonstrates the effectiveness and robust features of the proposed method.  相似文献   

3.
Leakage current of CMOS circuit increases dramatically with the technology scaling down and has become a critical issue of high performance system. Subthreshold, gate and reverse biased junction band-to-band tunneling (BTBT) leakages are considered three main determinants of total leakage current. Up to now, how to accurately estimate leakage current of large-scale circuits within endurable time remains unsolved, even though accurate leakage models have been widely discussed. In this paper, the authors first dip into the stack effect of CMOS technology and propose a new simple gate-level leakage current model. Then, a table-lookup based total leakage current simulator is built up according to the model. To validate the simulator, accurate leakage current is simulated at circuit level using popular simulator HSPICE for comparison. Some further studies such as maximum leakage current estimation, minimum leakage current generation and a high-level average leakage current macromodel are introduced in detail. Experiments on ISCAS85 and ISCAS89 benchmarks demonstrate that the two proposed leakage current estimation methods are very accurate and efficient.  相似文献   

4.
This article investigates the problem of robust stability for neural networks with time-varying delays and parameter uncertainties of linear fractional form. By introducing a new Lyapunov-Krasovskii functional and a tighter inequality, delay-dependent stability criteria are established in term of linear matrix inequalities (LMIs). It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the applicability of the proposed approach. Recommended by Editorial Board member Naira Hovakimyan under the direction of Editor Young-Hoon Joo. This work was supported by the National Science foundation of China under Grant no. 60774013 and Key Laboratory of Education Ministry for Image Processing and Intelligent Control under grant no. 200805. Tao Li received the Ph.D. degree in The Research Institute of Automation Southeast University, China. Now He is an Assistant Professor in Department of Information and Communication, Nanjing University of Information Science and Technology. His current research interests include time-delay systems, neural networks, robust control, fault detection and diagnosis. Lei Guo received the Ph.D. degree in the Research Institute of Automation Southeast University, China. From 1999 to 2004, he has worked at Hong Kong University, IRCCyN (France), Glasgow University, Loughborough University and UMIST, UK. Now He is a Professor in School of Instrument Science and Opto-Electronics Engineering, Beihang University. His current research interests include robust control, fault detection and diagnosis. Lingyao Wu received the Ph.D. degree in The Research Institute of Automation Southeast University, China. Now He is an Assistant Professor in the Research Institute of Automation Southeast University. His current research interests include time-delay systems, neural networks, robust control, fault detection and diagnosis. Changyin Sun received the Ph.D. degree in the Research Institute of Automation Southeast University, China. Now He is a Professor in the Research Institute of Automation Southeast University. His current research interests include timedelay systems, neural networks.  相似文献   

5.
Survey on the stability of networked control systems   总被引:1,自引:0,他引:1  
The insertion of the communication network in the feedback control loop makes the analysis and design of a network control system more complex, and induces some issues that degrade the control system’s performance and even cause system instability. The main aspects are focused on the stability analysis of Network Control Systems (NCSs) with network-induced delays, data packet dropouts, and multiple-packet transmission. These issues must be considered in the design of an NCS. This work summarizes the main research results, and remarks on some related handling approaches and techniques. The main purpose of the survey is to present the new research state of NCSs and to point out some fields of future work.  相似文献   

6.
7.
In this paper we deal with the problem of plants with large parameter variations under different operating modes. A novel intelligent control algorithm based on multiple models is proposed to improve the dynamical response performance. At the same time adaptive model bank is applied to establish models without prior system information. Multiple models and corresponding controllers are automatically established on-line by a conventionally adaptive model and a re-initialized one. A best controller is chosen by the performance function at every instant. The closed-loop system’s stability and asymptotical convergence of tracking error can be guaranteed. Simulation results have confirmed the validity of the proposed method.  相似文献   

8.
A real-time arc welding robot visual control system based on a local network with a multi-level hierarchy is developed in this paper. It consists of an intelligence and human-machine interface level, a motion planning level, a motion control level and a servo control level. The last three levels form a local real-time open robot controller, which realizes motion planning and motion control of a robot. A camera calibration method based on the relative movement of the end-effector connected to a robot is proposed and a method for tracking weld seam based on the structured light stereovision is provided. Combining the parameters of the cameras and laser plane, three groups of position values in Cartesian space are obtained for each feature point in a stripe projected on the weld seam. The accurate three-dimensional position of the edge points in the weld seam can be calculated from the obtained parameters with an information fusion algorithm. By calculating the weld seam parameter from position and image data, the movement parameters of the robot used for tracking can be determined. A swing welding experiment of type Ⅴgroove weld is successfully conducted, the results of which show that the system has high resolution seam tracking in real-time, and works stably and efficiently.  相似文献   

9.
This paper concerns the problem of robust fault detection filter design for uncertain linear time-invariant (LTI) systems with both model uncertainty and disturbances. Firstly, the fault detection filter design is formulated to H model-matching problem. Secondly, based on a new bounded real lemma, a sufficient condition for the existence of the robust fault detection filter is constructed in term of linear matrix inequalities (LMIs). Owing on the introduction of the tuning parameter and slack variables in obtained LMI condition, the proposed design method can provide higher fault detection sensitivity performance than the existing one. Finally, an illustrative example is employed to demonstrate the effectiveness of the proposed approach. Recommended by Editorial Board member Bin Jiang under the direction of Editor Jae Weon Choi. This work was supported by Postdoctoral Fundation of Jiangsu Province under grant 0901026c and Key Laboratory of Education Ministry for Image Processing and Intelligent Control under grant 200805. Tao Li received the Ph.D. degree in the Research Institute of Automation Southeast University, China. Now He is a postdoctoral researcher with the same university. His current research interests include time-delay systems, neural networks, robust control, fault detection and diagnosis. Lingyao Wu received the Ph.D. degree in the Research Institute of Automation Southeast University, China. Now He is an Assistant Professor in the Research Institute of Automation Southeast University. His current research interests include time-delay systems, neural networks, robust control, fault detection and diagnosis. Xinjiang Wei was born in Dongying, China, in 1977. He received the B.S. degrees from Yantai Normal University, China in 1999, M.S. degrees from Bohai University in 2002, and the Ph.D. degree in Department of Information from Northeastern University in 2005. From 2006 to Present, he was with Ludong University as an Associate Professor. From 2006 to 2009, he was a Postdoctoral Fellow at Southeast University. His research interests include robust control, nonlinear control, and fuzzy control.  相似文献   

10.
A New Algorithm for Generalized Optimal Discriminant Vectors   总被引:6,自引:1,他引:6       下载免费PDF全文
A study has been conducted on the algorithm of solving generalized optimal set of discriminant vectors in this paper.This paper proposes an analytical algorithm of solving generalized optimal set of discriminant vectors theoretically for the first time.A lot of computation time can be saved because all the generalized optimal ests of discriminant vectors can be obtained simultaneously with the proposed algorithm,while it needs no iterative operations .The proposed algorithm can yield a much higher recognition rate.Furthermore,the proposed algorithm overcomes the shortcomings of conventional human face recognition algorithms which were effective for small sample size problems only.These statements are supported by the numerical simulation experiments on facial database of ORL.  相似文献   

11.
Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach.  相似文献   

12.
A digital turbine control system (TCS) has been developed for retrofitting an old analog TCS in a nuclear power plant. The developed TCS, which controls the speed of a turbine and the power load of a generator, is based on a triple modular redundant structure to ensure the system reliability. In addition, a turbine simulator has been developed to verify the perfection of the TCS prior to its actual installation. The simulator is composed of a graphic editor, a component model builder, and a system simulation solver. The tested TCS has been successfully applied to a CANDU type nuclear power plant. This paper describes major features of the developed TCS and the turbine simulator including thermal-hydraulic models. Also, the simulation result in a laboratory is compared with the pre startup simulation and the actual operation result. Recommended by Editor Hyun Seok Yang. In-Kyu Choi was born in Jeonjoo, Korea in 1967. He obtained his Master’s degree in Electrical Engineering from Chungnam National University in 2004. His research interests include control in power plant machines such as boilers, drums, turbines, and generators. He is now a Senior Member of the KEPCO Research Institute. Jong-An Kim received the B.S. degree in Electronic Engineering from Won-Kwang University, Ik-San, Korea in 1985. He joined the Korea Electric Power Corporation (KEPCO) in 1976, and has mainly worked in the control systems engineering areas of power plants. He is now a Principal Engineer in the Korea Electric Power Research Institute (KEPRI) and his research interests include the design of power plant control systems as well as new technology development. Chang-Ki Jeong was born in Daejeon, Korea in 1956. He obtained his Master’s degree in Electrical Engineering from Daejeon Industry College in 1998. His research interests include control in power plant machines such as boilers, drums, turbines, and generators. He is a Principal Member of the KEPCO Research Institute. Joo-Hee Woo was born in Sangjoo, Korea in 1970. He obtained his Master’s degree in Electrical Engineering from Kyungbook National University in 1995. His research interests include control in power plant machines such as boilers, drums, turbines, and generators. He is now a Senior Member of the KEPCO Research Institute. Ji-Young Choi received the B.S. degree in Mechanical Engineering from Sogang University in 2005. He is a graduate student of the Department of Mechanical Engineering at Sogang University in Seoul, Korea. Choi’s research interests are in the areas of heat transfer, PEM fuel cells, and microfluidics. Gihun Son received the B.S. and M.S. degrees in Mechanical Engineering from Seoul National University in 1986 and 1988, respectively. He obtained the Ph.D. degree in Mechanical Engineering from UCLA in 1996. Dr. Son is currently a Professor in the Department of Mechanical Engineering at Sogang University in Seoul, Korea. His research interests are in the areas of multiphase dynamics, heat transfer, and power system simulation.  相似文献   

13.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

14.
A non-slicing approach,Corner Block List(CBL),has been presented recently.Since CBL only can represent floorplans without empty rooms,the algorithm based on CBL cannot get the optimum placement.In this paper,an extended corner block list,ECBLλ,is proposed.It can represent non-slicing floorplan including empty rooms.Based on the optimum solution theorem of BSG(bounded-sliceline grid),it is proved that the solution space of ECBLn,where n is the number of blocks,contains the optimum block placement with the minimum area.A placement algorithm based on ECBLλ,whose solution space can be controlled by setting λ,the extending ratio,is completed.Whenλ is set as n,the algorithm based on ECBLn is the optimum placement search algorithm.Experiments show that λ has a reasonable constant range for building block layout problem,so the algorithm can translate an ECBLλ representation to its corresponding placement in O(n) time,Experimental results on MCNC benchmarks show promising performance with 7% improvement in wire length and 2% decrease in dead space over algorthms based on CBL.Meanwhile,compared with other algorithms,the proposed algorithm can get better results with less runtime.  相似文献   

15.
Here, the issue of robustness analysis of cell JAK-STAT signal transduction networks is addressed. This is investigated upon a mathematical model of IFN-γ induced JAK-STAT signaling pathway by applying robustness analysis which is based on a broad range of simultaneous and systematical parameters variation. The effects of the variations of the initial signal proteins' concentrations on the output of this system are also studied. The study demonstrates that the JAK-STAT signaling pathway is robust with respect to its "signal time" and "signal duration", but sensitive with respect to its "signal amplitude". These analysis results can point to experimental designs that can further test how the pathway activity can be perturbed.  相似文献   

16.
Mobility management is a challenging topic in mobile computing environment. Studying the situation of mobiles crossing the boundaries of location areas is significant for evaluating the costs and performances of various location management strategies. Hitherto, several formulae were derived to describe the probability of the number of location areas‘ boundaries crossed by a mobile. Some of them were widely used in analyzing the costs and performances of mobility management strategies. Utilizing the density evolution method of vector Markov processes, we propose a general probability formula of the number of location areas‘ boundaries crossed by a mobile between two successive calls. Fortunately, several widely-used formulae are special cases of the proposed formula.  相似文献   

17.
Water surface is one of the most important components of landscape scenes. When rendering spacious water surface such as that of the lakes and reservoirs, aliasing and/or moiré artifacts frequently occur in the regious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves, and the reflected rays at each sample point are distributed in a solid angle. To get rid of the artifacts of moiré pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir. The first, third and fifth co-authors were partially supported by the National Natural Science Foundation of China (Grant Nos. 60021201 and 60373035), Key Research Project of Ministry of Education (Grant No.01094) and the National Grand Fundamental Research 973 Program of China (Grant No.2002CB312102). Xue-Ying Qin is an associated professor of State Key Laboratory of CAD&CG, Zhejiang University. She received her Ph.D. degree from Hiroshima University in 2001, B.S. and M.S. degrees in Mathematics from Peking University in 1988 and from Zhejiang University in 1991, respectively. Her research interests include computer graphics, visions and image processing. Eihachiro Nakamae is currently Chairman of Sanei Co. He was granted the title of emeritus professor from both Hiroshima University and Hiroshima Institute of Technology. He was appointed as a researcher associate at Hiroshima University in 1956, a professor from 1968 to 1992 and an associated researcher at Clarkson College of Technology, Potsdam, N.Y., from 1973 to 1974. He was a professor at Hiroshima Prefectural University from 1992 to 1995 and a professor at Hiroshima Institute of Technology from a996 to the end of March 1999. He received his B.E., M.E., and Ph.D. degrees in electrical engineering in 1954, 1956, and 1967 from Waseda University. His research interests include computer graphics, image processing and electric machinery. He is a member of IEEE, ACM, CGS, Eurographics, IEE of Japan, and IPS of Japan. Wei Hua received his Ph.D. degree in applied mathematics from Zhejiang University in 2002. He joined the CAD&CG State Key Lab in 2002. His main interests include real-time simulation and rendering, virtual reality and software engineering. Yasuo Nagai is now an associate professor of Hiroshima Institute of Technology. He was appointed a researcher associate at Hiroshima Institute of Technology in 1965, and an associate professor in 1984. His research interests include computer graphics and image processing. He is a member of IEE, IEICE, IPSJ, and ITE of Japan. Qun-Sheng Peng was born in 1947. He received his Ph.D. degree in computer science from the University of East Anglia, U.K., in 1983. He is a professor and his research interests include computer graphics, computer animation, virtual reality, and point-based modeling and rendering.  相似文献   

18.
A parameter search for a Central Pattern Generator (CPG) for biped walking is difficult because there is no methodology to set the parameters and the search space is broad. These characteristics of the parameter search result in numerous fitness evaluations. In this paper, nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to effectively search the parameters of CPG. The NEPSO uses a concept experience repository to store a previous position and the fitness of particles in a PSO and estimated best position to accelerate a convergence speed. The proposed method is compared with PSO variants in numerical experiments and is tested in a three dimensional dynamic simulator for bipedal walking. The NEPSO effectively finds CPG parameters that produce a gait of a biped robot. Moreover, NEPSO has a fast convergence property which reduces the evaluation of fitness in a real environment. Recommended by Editorial Board member Euntai Kim under the direction of Editor Jae-Bok Song. Jeong-Jung Kim received the B.S. degree in Electronics and Information Engineering from Chonbuk National University in 2006 and the M.S. degree in Robotics from Korea Advanced Institute of Science and Technology in 2008. He is currently working toward a Ph.D. at the Korea Advanced Institute of Science and Technology. His research interests include biologically inspired robotics and machine learning. Jun-Woo Lee received the B.S. degree in Electronics, Electrical and Communication Engineering from Pusan National University in 2007. He is currently working toward an M.S. in the Korea Advanced Institute of Science and Technology. His research interests include swarm intelligence and machine learning. Ju-Jang Lee was born in Seoul, Korea, in 1948. He received the B.S. and M.S. degrees from Seoul National University, Seoul, Korea, in 1973 and 1977, respectively, and the Ph.D. degree in Electrical Engineering from the University of Wisconsin, in 1984. From 1977 to 1978, he was a Research Engineer at the Korean Electric Research and Testing Institute, Seoul. From 1978 to 1979, he was a Design and Processing Engineer at G. T. E. Automatic Electric Company, Waukesha, WI. For a brief period in 1983, he was the Project Engineer for the Research and Development Department of the Wisconsin Electric Power Company, Milwaukee. He joined the Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, in 1984, where he is currently a Professor. In 1987, he was a Visiting Professor at the Robotics Laboratory of the Imperial College Science and Technology, London, U.K. From 1991 to 1992, he was a Visiting Scientist at the Robotics Department of Carnegie Mellon University, Pittsburgh, PA. His research interests are in the areas of intelligent control of mobile robots, service robotics for the disabled, space robotics, evolutionary computation, variable structure control, chaotic control systems, electronic control units for automobiles, and power system stabilizers. Dr. Lee is a member of the IEEE Robotics and Automation Society, the IEEE Evolutionary Computation Society, the IEEE Industrial Electronics Society, IEEK, KITE, and KISS. He is also a former President of ICROS in Korea and a Counselor of SICE in Japan. He is a Fellow of SICE and ICROS. He is an Associate Editor of IEEE Transactions on Industrial Electronics and IEEE Transactions on Industrial Informatics.  相似文献   

19.
The H synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method. The simulation results illustrate the effectiveness of the proposed methodology. Recommended by Editorial Board member Bin Jiang under the direction of Editor Jae Weon Choi. This research has been partially funded by the German Research Foundation (DFG) as part of the Collaborative Research Center 637 ‘Autonomous Cooperating Logistic Processes: A Paradigm Shift and its Limitations’ (SFB 637). This work was supported in part by the National Natural Science Foundation of China (60504008), by the Research Fund for the Doctoral Program of Higher Education of China (20070213084), by the Fok Ying Tung Education Foundation (111064). Hamid Reza Karimi born in 1976, received the B.Sc. degree in Power Systems Engineering from Sharif University of Technology in 1998 and M.Sc. and Ph.D. degrees both in Control Systems Engineering from University of Tehran in 2001 and 2005, respectively. From 2006 to 2007, he was a Post-doctoral Research Fellow of the Alexander-von-Humboldt Stiftung with both Technical University of Munich and University of Bremen in Germany. He held positions as Assistant Professor at the Department of Electrical Engineering of the University of Tehran in Iran, Senior Research Fellow in the Centre for Industrial Mathematics of the University of Bremen in Germany and Research Fellow of Juan de la Cierva program at the Department of Electronics, Informatics and Automation of the University of Girona in Spain before he was appointed as an Associate Professor in Control Systems at the Faculty of Technology and Science of the University of Agder in Norway in April 2009. His research interests are in the areas of nonlinear systems, networked control systems, robust filter design and vibration control of flexible structures with an emphasis on applications in engineering. Dr. Karimi was the recipient of the German Academic Awards (DAAD Award) from 2003 to 2005 and was a recipient of the Distinguished Researcher Award from University of Tehran in 2001 and 2005. He received the Distinguished PhD Award of the Iranian President in 2005 and the Iranian Students Book Agency’s Award for Outstanding Doctoral Thesis in 2007. He also received first rank of Juan de la Cierva research program in the field of Electrical, Electronic and Automation Engineering in Spain in 2007. Huijun Gao was born in Heilongjiang Province, China, in 1976. He received the M.S. degree in Electrical Engineering from Shenyang University of Technology, Shengyang, China, in 2001 and the Ph.D. degree in Control Science and Engineering from Harbin Institute of Technology, Harbin, China, in 2005. He was a Research Associate with the Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, from November 2003 to August 2004. From October 2005 to September 2007, he carried out his postdoctoral research with the Department of Electrical and Computer Engineering, University of Alberta, Canada, supported by an Alberta Ingenuity Fellowship and an Honorary Izaak Walton Killam Memorial Postdoctoral Fellowship. Since November 2004, he has been with Harbin Institute of Technology, where he is currently a Professor. His research interests include network-based control, robust control/filter theory, model reduction, time-delay systems, multidimensional systems, and their engineering applications. Dr. Gao is an Associate Editor for the IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics, the Journal of Intelligent and Robotics Systems, the Circuits, System and Signal Processing etc. He serves on the Editorial Board of the International Journal of Systems Science, the Journal of the Franklin Institute etc. He was the recipient of the University of Alberta Dorothy J. Killam Memorial Postdoctoral Fellow Prize in 2005 and was a corecipient of the National Natural Science Award of China in 2008. He was a recipient of the National Outstanding Youth Science Fund in 2008 and the National Outstanding Doctoral Thesis Award in 2007. He was an outstanding reviewer for IEEE Transactions on Automatic Control and Automatica in 2008 and 2007 respectively, and an appreciated reviewer for IEEE Transactions on Signal Processing in 2006.  相似文献   

20.
In this paper, stability and disturbance attenuation issues for a class of Networked Control Systems (NCSs) under uncertain access delay and packet dropout effects are considered. Our aim is to find conditions on the delay and packet dropout rate, under which the system stability and H∞ disturbance attenuation properties are preserved to a desired level. The basic idea in this paper is to formulate such Networked Control System as a discrete-time switched system. Then the NCSs’ stability and performance problems can be reduced to the corresponding problems for switched systems, which have been studied for decades and for which a number of results are available in the literature. The techniques in this paper are based on recent progress in the discrete-time switched systems and piecewise Lyapunov functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号