首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compatibilized and non-compatibilized blends of polypropylene (PP) and poly(lactic acid) (PLA) with various compositions containing nanoclay particles were prepared by one step melt compounding in a twin screw extruder. Two nanocomposite systems with different matrices i.e. PP-rich (75/25 composition) containing Cloisite 15A and PLA-rich (25/75 composition) containing Cloisite 30B were selected for investigation of effect of nanoclays and n-butyl acrylate glycidyl methacrylate ethylene terpolymers (PTW) as compatibilizer on mechanical properties of PP/PLA/clay nanocomposites. Tensile and impact properties of the nanocomposite systems were investigated and correlated with their microstructures. Tensile modulus and strength of the blends were increased while elongation at break decreased by increasing PLA content. There was an irregular relationship between impact strength of the blends and PLA content. Several proposed models for blends and nanocomposites were used for prediction of tensile modulus of the samples. Most of the proposed models for blends could predict the tensile modulus of the blends successfully at low content of PLA. Another notable point was that most of the micromechanical models for nanocomposites fitted well to experimental values at low content of the clays and showed deviations at high clay loadings.  相似文献   

2.
In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.  相似文献   

3.
The objective of this study was to investigate the effects of two compatibilizers, namely maleated polypropylene (PP-g-MA) and maleic anhydride grafted poly (ethylene-co-octene) (EOC-g-MA), on the morphology and thus properties of ternary nanocomposites of polypropylene (PP)/ethylene–octene copolymer (EOC)/clay nanocomposite. In this regard the nanocomposites and their neat polymer blend counterparts were processed twice using a twin screw extruder. X-ray diffraction, transmission electron microscopy, Energy dispersive X-ray spectroscopy, and scanning electron microscopy were utilized to characterize nanostructure and microstructure besides mechanical and rheological behaviors of the nanocomposites. Clay with intercalated structure was observed in EOC phase of the PP/EOC/clay nanocomposite. Better dispersion state of the intercalated clay in EOC phase was observed by adding EOC-g-MA as a compatibilizer. On the other hand, adding PP-g-MA resulted in migration of the intercalated clay from the EOC to the PP and to the interface regions. It was also demonstrated that the elastomer particles became smaller in size where clay was present. The finest and the most uniform morphology was found in the PP/EOC/clay nanocomposite. In addition, the rheological results illustrated a higher complex viscosity and storage modulus for PP/EOC/PP-g-MA/clay nanocomposite in which clay particles were present in the matrix. Mechanical assessments showed improvements in the toughness of the nanocomposites with respect to their neat blends, without significant change in stiffness and tensile strength values. These results highlight a toughening role of clay in the polymer blend nanocomposites studied.  相似文献   

4.
The present contribution focuses on the modification of a 160/220 bituminous binder with clay and polymer/clay nanocomposites. Bitumen/polymer/clay ternary blends were prepared using styrene–butadiene–styrene, ethylene vinyl acetate and ethylene methylacrylate copolymers mixed with an organomodified montmorillonite. Dynamic mechanical analyses were performed in the extended domain of stress, temperature and frequency to analyse the thermorheological behaviour of the blends. The time–temperature superposition principle was applied to shift the experimental data recorded at different temperatures and generate master curves of the linear viscoelastic functions. For all blends, the mechanical response of the system was found to be strongly and intimately influenced by the nanocomposite modification. In some cases, a solid-like behaviour appears and delays the Newtonian transition. Morphological analyses performed with fluorescence microscopy allowed to associate the binder properties with the presence of clay silicates, which alter the colloidal equilibrium of the bitumen and enhances the compatibility between bitumen and polymers. Based on the morphological and rheological results, a structural model of the prepared blends is proposed.  相似文献   

5.
The morphology, microstructure, tensile properties, and dynamic mechanical properties of solid and microcellular poly(lactic acid) (PLA)/polyhydroxybutyrate-valerate (PHBV) blends, as well as PLA/PHBV/clay nanocomposites, together with the thermal and rheological properties of solid PLA/PHBV blends and PLA/PHBV/clay nanocomposites, were investigated. Conventional and microcellular injection-molding processes were used to produce solid and microcellular specimens in the form of ASTM tensile test bars. Nitrogen in the supercritical state was used as the physical blowing agent in the microcellular injection molding experiments. In terms of rheology, the PLA/PHBV blends exhibited a Newtonian fluid behavior, and their nanocomposite counterparts showed a strong shear-thinning behavior, over the full frequency range. An obvious pseudo-solid-like behavior over a wide range of frequencies in the PLA/PHBV/clay nanocomposites suggested a strong interaction between the PLA/PHBV blend and the nanoclay that restricted the relaxation of the polymer chains. PLA/PHBV/clay nanocomposites possess a higher modulus and greater melt strength than PLA/PHBV blends. The addition of nanoclay also decreased the average cell size and increased the cell density of microcellular PLA/PHBV specimens. As a crystalline nucleating agent, nanoclay significantly improved the crystallinity of PHBV in the blend, thus leading to a relatively high modulus for both solid and microcellular specimens. However, the addition of nanoclay had less of an effect on the tensile strength and strain-at-break.  相似文献   

6.
Mechanical and thermal properties of non-crimp glass fiber reinforced clay/epoxy nanocomposites were investigated. Clay/epoxy nanocomposite systems were prepared to use as the matrix material for composite laminates. X-ray diffraction results obtained from natural and modified clays indicated that intergallery spacing of the layered clay increases with surface treatment. Tensile tests indicated that clay loading has minor effect on the tensile properties. Flexural properties of laminates were improved by clay addition due to the improved interface between glass fibers and epoxy. Differential scanning calorimetry (DSC) results showed that the modified clay particles affected the glass transition temperatures (Tg) of the nanocomposites. Incorporation of surface treated clay particles increased the dynamic mechanical properties of nanocomposite laminates. It was found that the flame resistance of composites was improved significantly by clay addition into the epoxy matrix.  相似文献   

7.
A lamellar forming poly(ethylene oxide)-b-polystyrene (PEO-b-PS)/organoclay nanocomposite with a unique hierarchical structure has been fabricated, by casting solution blends of the block copolymer and organoclay, with subsequent annealing at 180 °C for 8 h under uniaxial constraint. PEO-b-PS provided the nanocomposite lamellar structure with a slightly increased long period. Lamellar layers of the nanocomposite block copolymer were oriented parallel to the film plane. Fully exfoliated clay platelets were localized mostly in the aligned PEO layers, and all platelets were found to be parallel to the interface between PEO and PS layers. PEO crystals in the nanocomposite were oriented with the c-axis perpendicular to the phase-separated layers. The orientation function degree of the PEO crystals within the nanocomposite was lower than that of the crystals within the neat block copolymer.  相似文献   

8.
A novel clay/waterborne polyurethane (WPU) nanocomposite was synthesized from polyurethane and organoclay. The clay was organically modified with a swelling agent, namely, 1,12-diaminododecane. The nanocomposite was characterized using Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The d-spacing of clay was determined by X-ray diffraction (XRD) and confirmed by transmission electron microscopy (TEM). XRD and TEM analyses indicated that clay retains a layer structure in the clay/waterborne polyurethane (WPU) nanocomposite. Consequently, these materials are an intercalated nanocomposite with a d-spacing of around 4 to 5 nm. FT-IR revealed that adding clay does not affect the synthesis of the waterborne polyurethane. GPC results indicated that molecular weight decreased as the clay content increased. The thermal properties of the nanocomposite were examined using a thermogravimetric analyzer (TGA). Results showed that adding clay increased the temperature of thermal degradation by 15°C.  相似文献   

9.
粘土/羧基丁腈橡胶纳米复合材料的结构与性能研究   总被引:24,自引:0,他引:24  
利用橡胶乳液/粘土纳米晶层互穿技术制备了粘土/羧基丁腈橡胶纳米复合材料,用透射电了显微镜证实和描述了其纳米分散相结构,用动态粘弹谱仪测量和研究了其动态力学性能和分子热运动特性。研究了这种纳米复合材料的力学性能、各向异性、耐磨性、气密性和溶胀性等性能。剖析了粘土晶层的补强机理和分散机理。结果表明,复合材料中粘土的精细分散结构使材料具有较好的力学性能,如拉伸强度和撕裂强度,耐溶胀性能,优异的耐磨性和气  相似文献   

10.
The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.  相似文献   

11.
This study focuses on achieving high stiffness/strength and high fracture toughness in nylon 6/organoclay nanocomposites prepared via melt compounding by incorporating a maleic anhydride grafted polyethylene–octene elastomer (POE-g-MA) as a toughening agent. Mechanical test results indicated that the ternary nanocomposites exhibited higher stiffness than nylon 6/POE-g-MA binary blends at any given POE-g-MA content. More importantly, the brittle–ductile transition of nylon 6/POE-g-MA blends was not impaired in the presence of organoclay for the compositions prepared in this study. TEM analysis shows that organoclay layers and elastomer particles were dispersed separately in nylon 6 matrix. In the binary nanocomposite, no noticeable plastic deformation was observed around the crack tip. In the ternary nanocomposites, the presence of organoclay in the matrix provided maximum reinforcement to the polymer, while their absence in the elastomer particles allowed the latter to promote high fracture toughness via particle cavitation and subsequent matrix shear yielding. The partially exfoliated clay layers also delaminated and hence, adding to the total toughness of the nanocomposites.  相似文献   

12.
In order to analyze the effect of an epoxidized natural rubber (ENR) and filler treatment on the morphology and behavior of natural rubber (NR) nanocomposites, blends of these polymers have been prepared. The nature and extent of the clay dispersions in the filled samples were evaluated by X-ray diffraction. In the presence of ENR, an exfoliated structure was obtained which suggests that enough rubbery polymer was incorporated into the interlayer spacing. The effect of clay in rubber compounds was analyzed through rheological, mechanical and swelling characterization. A sensible improvement in the nanocomposite properties was observed by the addition of organoclay. It has been deduced that the properties of the compounds strongly depend on the extent of the silicate nanolayers dispersion into the rubber matrices as well as on the organoclay type and elastomer compatibility.  相似文献   

13.
A new technique for the preparation of high density polyethylene/clay nanocomposite, "polymerization compounding," is reported. This technique was based on the chemical anchoring of a Ziegler-Natta catalyst on organically modified clay surface containing an ammonium cation bearing primary hydroxyl groups. The polymerization of ethylene was initiated after adequate activation and the growing polyethylene chains are directly adsorbed on to the clay surface through the hydroxyl-functionalized surfactant. Finally, the nanocomposite was prepared by diluting polyethylene adsorbed clay in the high density polyethylene (HDPE) matrix using a batch mixer at 180 degrees C. The as-synthesized nanocomposite was typically characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) that revealed the formation of intercalated nanocomposite. Tensile property measurements exhibit substantial increase in stiffness (approximately 50%) and strength (approximately 20%) of nanocomposite as compared to that of neat HDPE. Dynamic mechanical analysis under molten state revealed 25% increase in storage modulus when compared to that of neat HDPE.  相似文献   

14.
The aim of this work was to investigate cellulose acetate/poly(epichlorohydrin) (CA/PEPi) blends and cellulose acetate/poly(epichlorohydrin)/organically modified montmorillonite clay nanocomposites (CA/PEPi/MMTO) prepared by melt processing in a twin-screw extruder. The combination of an elastomer and clay in the cellulose acetate matrix was an attempt made to reach a balance between toughness and strength properties. The blend and nanocomposite structure, morphology and thermal properties were investigated by small angle X-ray scattering, transmission electron microscopy and dynamical mechanical analysis. The results showed immiscibility of the polymer components for all the CA/PEPi blend composition range investigated. In the case of the nanocomposites, the results indicated a significant polymer intercalation in the clay gallery as well as the exfoliation of the silicate layers. Moreover, the organoclay was present in the CA phase, but some of the organoclay migrated to the CA/PEPi interface and tended to surround the PEPi phase. The addition of PEPi elastomer to cellulose acetate showed a significant increase in the blend impact resistance. However the combination of PEPi and MMTO did not in fact produce a good stiffness versus toughness balance.  相似文献   

15.
在对胺类固化剂-插层剂体系分析的基础上,选定叔胺类固化剂(BDMA)-Bronsted酸类插层剂(CH3(CH2)11NH3Cl)体系,制得了环氧树脂/粘土纳米复合材料,复合材料的XRD分析表明粘土在环氧树脂中已经剥离.结合有关研究成果,得出以下结论:在其他条件合适的情况下,只要插层剂为Bronsted酸类或者固化剂为叔胺类,就能得到剥离型的环氧树脂/粘土纳米复合材料.  相似文献   

16.
Polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) / clay nanocomposite membranes were prepared by phase inversion method through controlling retention time to apply for a lithium ion secondary batteries. Increased membrane porosity with macrovoids was observed at increasing retention time. Partially intercalated structures of PVdF-HFP/clay nanocomposite membranes were confirmed by X-ray diffraction (XRD) analysis. PVdF-HFP membranes containing various kind of clay showed the increase of membrane modulu...  相似文献   

17.
Nanocomposite materials of poly(vinyl acetate) (PVAc) and organoclay were fabricated, in order to be utilized as dielectric materials of the organic thin film transistor (OTFT). Spin coating condition of the nanocomposite solution was examined considering shear viscosity of the composite materials dissolved in chloroform. Intercalated structure of the PVAc/clay nanocomposites was characterized using both wide-angle X-ray diffraction and TEM. Fracture morphology of the composite film on silicon wafer was also observed by SEM. Dielectric constant (4.15) of the nanocomposite materials shows that the PVAc/clay nanocomposites are applicable for the gate dielectric materials.  相似文献   

18.
The crystallization morphologies, thermal behaviors and mechanical properties of PP/PTT/nanoclay blends nanocomposite fibers were investigated. Polypropylene/poly (trimethylene terephthalate) blends containing montmorillonite (MMT) were prepared using a twin screw extruder followed by fiber spinning process. The melt intercalation of PP and PPT alloys was carried out in the presence of a compatibilizer such as maleic anhydride-g-polyropylene (MAPP). The results show the improved adhesion between the phases and fine morphology of the dispersed phase. It has contributed to significant improvement in the properties and thermal stabilities of the final nanocomposite materials. A general understanding of how the morphology is likely to be related to the final properties of organically modified montmorillonite (OMMT)-incorporated PP/PTT blends is also described.  相似文献   

19.
Poly(ethylene terephthalate) (PET)/clay nanocomposite samples were prepared by melt blending PET and Cloisite 20A nanoparticles. A stretch blow‐moulding machine was used to produce bottles from neat PET and PET nanocomposite. Tests were performed on the migration of aluminum and silicon from PET nanocomposite bottles into acidic food simulant. The samples were stored at room temperature (about 25°C) and 45°C for time durations ranging from 7 to 90 days. A specific surface of sheets (prepared from PET/clay nanocomposite) immersed in acidic food simulant, and two‐sided migration of Al and Si was investigated. According to X‐ray diffraction analysis, the nanoclays show intercalated structure in the PET matrix. Transmission electron microscopy and atomic force microscopy micrographs displayed both intercalation and exfoliation morphology for PET/clay nanocomposites. Inductively coupled plasma was used to quantify amounts of Al and Si that had migrated into the acidic food simulant. It was observed that the migration process is dependent on storage time and temperature, and the molar ratio of aluminum and silicon in the acidic aqueous solution (Al/Si)aq to the ratio in the solid phase of prepared nanocomposites (Al/Si)solid was about 23% higher in the samples stored at 45°C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A series of melt processed clay filled-PP/PET immiscible blends were analyzed in terms of thermal and mechanical properties combined with a theoretical analysis using a mechanical model for probing nanoclay localization in the blends influenced by blend composition, nanoclay content and type of matrix (PET-rich and PP-rich). According to the results obtained from DSC technique, it was shown that localization of nanoclay in the blend systems can be detected by analyzing changes in crystallization temperature and crystallinity of polymer components of the blend systems. From the tensile test results, it was revealed that tensile strength of the blend systems was affected by localization of nanoclay in the matrix phase, only. There was observed no compatibilization effect of nanoclay localized at interface of the blends, on mechanical properties improvement. Also, it was revealed that localization of nanoclay particles in matrix phase resulted in their more efficiency to increase tensile modulus than that localized in disperse phase. However, this efficiency was still dramatically low as compared to that predicted by Hui–Shia model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号