首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the influence of molybdenum disulfide (MoS2) as solid lubricant and filler on the polycarbonate (PC) and carbon black (CB) composites, PC containing one weight percentage of CB powder was compounded and extruded with 0.5, 1.0, 2.0, and 3.0 weight percentage of MoS2 powder in a co‐rotating twin screw extruder. Thus, the fabricated PC/CB/MoS2 composites were characterized for physicomechanical properties such as density, void content, surface hardness, tensile behaviors, and impact strength. The thermal characteristics of the composites have been studied by differential scanning calorimetry and dynamic mechanical analysis (DMA). The effect of MoS2 content, loads and sliding distances on wear characteristics of the composites were evaluated using pin‐on‐disc equipment. It was found that wear, friction, and laser etching resistance of PC/CB/MoS2 composites increased with increase in MoS2 content along with improvement in tensile and impact strengths. DMA analysis indicates the storage modulus of PC/CB/MoS2 composites increased with increase in MoS2 content below the glass transition temperature (Tg) of PC. Worn surfaces and laser etched surfaces were examined with scanning electron microscopy and optical microcopy respectively to have better insight of the wear and laser etching mechanism. It was observed that the MoS2 as solid lubricant played major role in improving resistance to wear, friction, and laser etching. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
The flake graphite, polytetrafluoroethylene, and molybdenum disulfide (MoS2) filled phenolic resin‐based composites were prepared by hot press molding. The thermal, mechanical, and tribological properties of composites were studied systematically. The morphologies of the worn surfaces and the change of chemical compositions during the sliding process of the composites were analyzed by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. It was found that the heat‐resisting performance and the hardness of the composites are less affected by solid lubricants, while the solid lubricants did harm to the flexural strength of the composites. The friction and wear behaviors of composites highly depended on the volume fractions of solid lubricants and the sliding conditions. The wear resistance increases and the coefficient of friction decreases when the filler load increases. In addition, the appropriate content of solid lubricants is beneficial to reducing the sensitivities of the composites to load and sliding speed. POLYM. COMPOS., 36:2203–2211, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
To improve the tribological properties of basalt‐fabric‐reinforced phenolic composites, solid lubricants of MoS2 and graphite were incorporated, and the tribological properties of the resulting basalt‐fabric composites were investigated on a model ring‐on‐block test rig under dry sliding conditions. The effects of the filler content, load, and sliding time on the tribological behavior of the basalt‐fabric composites were systematically examined. The morphologies of the worn surfaces and transfer films formed on the counterpart steel rings were analyzed by means of scanning electron microscopy. The experimental results reveal that the incorporation of MoS2 significantly decreased the friction coefficient, whereas the inclusion of graphite improved the wear resistance remarkably. The results also indicate that the filled basalt‐fabric composites seemed to be more suitable for friction materials serving under higher loads. The transfer films formed on the counterpart surfaces during the friction process made contributions to the reduction of the friction coefficient and wear rate of the basalt‐fabric composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The lubrication performances of diamond like carbon (DLC) films were investigated by a ball-on-disc tribometer under perfluoropolyether (PFPE) oil lubrications. The influence of nano lubricant additives in PFPE oil on the tribological properties of DLC films was evaluated. The experimental results show that the solid-liquid synergy lubrication is beneficial to improve the tribological properties of the steel-related friction system and the tribological properties of the friction pair are significantly influenced by lubrication modes and the types and contents of nano lubricant additives under PFPE oil lubrication. The friction system exhibits super low friction behaviors under PFPE oil with nano MoS2 lubricant additive lubrication due to the excellent compatibility of nano MoS2 additives with PFPE oil. Coefficient of friction (CoF) of the friction system is as super low as 0.02 under PFPE oil with 0.2?wt.% nano MoS2 additive lubrication. Superlow friction mechanism is attributed to the pointlike contact of nano MoS2 additive as soft phase and the excellent diffusion behaviors of nano MoS2 additives in PFPE oil. The potential usefulness of nano MoS2 particles as the lubricant additives in PFPE oil for the steel/DLC films has been demonstrated.  相似文献   

5.
Composites of polyphenylene sulfide (PPS) filled with solid lubricant particles of graphite (C), molybdenum disulfide (MoS2), and polytetrafluoroethylene (PTFE) were prepared by compression molding. The size of the solid lubricant particles was 3‐;5 µm. The friction and wear behaviors of the composites were examined with a pinon‐disk test rig. The worn composite pin surfaces and the transfer films formed on the counterface were analyzed with scanning electron microscopy. An X‐ray photo‐electron spectroscope (XPS) was used to characterize the chemical states of the elements in the transfer film. It has been found that graphite and PTFE as the fillers increase the wear resistance of PPS considerably, while MoS2 as the filler decreases the wear resistance of PPS greatly. The fillers promote the decomposition of PPS and generate compounds, which accounts for the changes in the wear resistance of the composites.  相似文献   

6.
The friction and wear characteristics of graphite, MoS2, and PTFE embedded tin‐bronze bearings were studied using a pin‐on‐disc tester. The results indicated that solid lubricants decreased and stabilized the friction coefficient, and decreased the wear rate by two to three orders of magnitude. When the content of solid lubricants, PTFE mixed with graphite, was 20–40%, the performance of the solid lubricants embedded bearing (SLEB) was the best. Wear scar was analyzed by means of X‐ray diffraction (XRD), Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The results show that the transfer films of solid lubricants reduce adhesion between the SLEBs and the mating material, and the wear mechanism of SLEBs changes to fatigue and adhesive wear. The main reason for fatigue wear is microcracks expanding at Pb points in SLEBs. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2394–2399, 2001  相似文献   

7.
《Polymer Composites》2017,38(8):1689-1697
The effects of hybrid filler of zinc oxide and chitosan (chitosan–ZnO) on thermal, flexural, antimicrobial, chemical resistance, and hardness properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE) composites with varying concentration of zinc oxide (ZnO) and further hybridized by chitosan (CS) were successfully studied. The composites were prepared using mechanical ball milling and followed by hot compression molding. The addition of ZnO to the UHMWPE matrix had lowered the melting temperature (T m) of the composite but delayed its degradation temperature. Further investigation of dual filler incorporation was done by the addition of chitosan to the UHMWPE/ZnO composite and resulted in the reduction of UHMWPE crystallization. The flexural strength and modulus had a notably high improvement through ZnO addition up to 25 wt% as compared to neat UHMWPE. However, the addition of chitosan had resulted in lower flexural strength than that of 12 wt% ZnO UHMWPE composite but still higher than that of neat UHMWPE. It was experimentally proven that the incorporation of ZnO and chitosan particles within UHMWPE matrix had further enhanced the antimicrobial properties of neat UHMWPE. Chemical resistance was improved with higher ZnO content with a slight reduction of mass change after the incorporation of chitosan. The hardness value increased with ZnO addition but higher incorporation of chitosan had lowered the hardness value. These findings have significant implications for the commercial application of UHMWPE based products. It appears that these hybrid fillers (chitosan–ZnO)‐reinforced UHMWPE composites exhibit superior overall properties than that of conventional neat UHMWPE. POLYM. COMPOS., 38:1689–1697, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
With an objective to investigate the influence of molybdenum disulphide (MoS2) on physico–mechanical and tribological properties of polyamide 66 (PA 66), was compounded with MoS2 in the presence of carbon black (CB). The compounded material was injection molded to make test specimens to evaluate physico–mechanical, thermal, and tribological (wear, friction, and laser etching) characteristics. It was found that tensile strength, percentage elongation at break, and tensile modulus of PA 66/CB/MoS2 composite increased linearly with increase in MoS2 content. The impact strength of the PA 66 matrix increased from 37.2 to 43.2 J/m with an increase in MoS2 content. The wear behavior of PA 66/CB/MoS2 composites have been investigated under dry sliding conditions at different normal loads, sliding distances, and sliding velocities at room temperature. It was found that the introduction of MoS2 in the presence of CB has certainly reduced the friction, wear behavior of PA 66 with improvement in laser etching resistance. MoS2 could increase the adhesion between the transfer film and the counterface surface. The ability of the synergistic fillers in helping the formation of thin, uniform, and continuous transfer film would contribute to enhance the wear resistance of PA 66 composites. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

9.
Ultrahigh‐molecular‐weight polyethylene (UHMWPE)/polar polyethylene (PE) composites were blended in one nascent particle by in situ polymerization with a hybrid catalyst. Polystyrene‐coated SiO2 particles were used to support the hybrid catalyst. Fe(acac)3/2,6‐bis[1‐(2‐isopropylanilinoethyl)] was supported on SiO2 for the synthesis of UHMWPE, whereas [PhN?C(CH3)CH?C(Ph)O]VCl2 was immobilized on a polystyrene layer to prepare a copolymer of ethylene and 10‐undecen‐1‐ol (polar PE). Importantly, the core part of the supports (the polystyrene layer) exhibited pronounced transfer resistance to 10‐undecen‐1‐ol; this provided an opportunity to keep the inside iron active sites away from the poisoning of 10‐undecen‐1‐ol. Therefore, UHMWPE was simultaneously synthesized with polar PE by in situ polymerization. Interestingly, the morphological results show that UHMWPE and the polar PE were successfully blended in one nascent polymer. This improved the miscibility of the composites, where most of the chains were difficult to crystallize because of the strong interactions between the PE chains and polar chains. The blends showed an extremely low crystallinity, that is, 9.9%. Finally, the hydrophilic properties of the polymer composites were examined. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46652.  相似文献   

10.
Porous ultrahigh‐molecular‐weight polyethylene (UHMWPE)‐based composites filled with surface‐modified Ce‐doped TiO2 nanoparticles (Ce–TiO2/UHMWPE) were prepared by template dissolution. The composites were characterized by Fourier transform infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, diffuse reflectance spectra, and scanning electron microscopy); the photocatalytic activity was also evaluated by the decomposition of methyl orange under UV exposure. The results demonstrate that the severe aggregation of Ce–TiO2 nanoparticles could be reduced by surface modification via a silane coupling agent (KH570). The Ce–TiO2/UHMWPE porous composites exhibited a uniform pore size. Doping with Ce4+ effectively extended the spectral response from the UV to the visible region and enhanced the surface hydroxyl groups of the TiO2 attached to the matrix. With a degradation rate of 85.3%, the 1.5 vol % Ce–TiO2/UHMWPE sample showed the best photocatalytic activity. The excellent permeability of the porous composites is encouraging for their possible use in wastewater treatment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Two surface modification methods—plasma surface treatment and chemical agent treatment—were used to investigate their effects on the surface properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers. In the analyses, performed using electron spectroscopy for chemical analysis, changes in weight, and scanning electron microscope observations, demonstrated that the two fiber‐surface‐modified composites formed between UHMWPE fiber and epoxy matrix exhibited improved interfacial adhesion and slight improvements in tensile strengths, but notable decreases in elongation, relative to those properties of the composites reinforced with the untreated UHMWPE fibers. In addition, three kinds of epoxy resins—neat DGEBA, polyurethane‐crosslinked DGEBA, and BHHBP‐DGEBA—were used as resin matrices to examine the tensile and elongation properties of their UHMWPE fiber‐reinforced composites. From stress/strain measurements and scanning electron microscope observations, the resin matrix improved the tensile strength apparently, but did not affect the elongation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 655–665, 2007  相似文献   

12.
Polydopamine (PDA) was employed to modify micrometric Al2O3 platelets to improve the interfacial compatibility between α‐Al2O3 powder and ultrahigh‐molecular‐weight polyethylene (UHMWPE). The structure of PDA‐coated Al2O3 and UHMWPE composites was investigated via Fourier transform infrared spectroscopy, scanning electron microscopy and X‐ray photoelectron spectroscopy. The thermal stability and mechanical performance of the samples were also evaluated. It is clear that UHMWPE/PDA‐Al2O3 composites exhibit better mechanical properties, higher thermal stability and higher thermal conductivity than UHMWPE/Al2O3 composites, owing to the good dispersion of Al2O3 powder in the UHMWPE matrix and the strong interfacial force between the macromolecules and the inorganic filler caused by the presence of PDA. The tensile strength and the tensile elongation at break of UHMWPE/PDA‐Al2O3 composite with 1 wt% PDA‐Al2O3 are 62.508 MPa and 462%, which are 1.96 and 1.98 times higher than those of pure UHMWPE, respectively. The thermal conductivity of UHMWPE/PDA‐Al2O3 composite increases from 0.38 to 0.52 W m?1 K?1 with an increase in the dosage of PDA‐Al2O3 to 20 wt%. The results show that the prepared PDA‐coated Al2O3 powder can simultaneously enhance the mechanical properties and thermal conductivity of UHMWPE. © 2018 Society of Chemical Industry  相似文献   

13.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
Ultrahigh‐molecular‐weight polyethylene (UHMWPE) and UHMWPE composites reinforced with graphene oxide (GO) were successfully fabricated through a new step of liquid‐phase ultrasonic dispersion, high‐speed ball‐mill mixing, and hot‐pressing molding technology. When the GO/UHMWPE composites were lubricated with deionized water (DW) and normal saline (NS) solution, their friction and wear properties were investigated through sliding against ZrO2. The worn surface and wear volume losses of these composites were studied with scanning electron microscopy, X‐ray photoelectron spectroscopy, and a Micro‐XAM 3D non‐contact surface profiler. The results show that the microhardness of the GO/UHMWPE composites was improved by 13.80% and the wear rates were decreased by 19.86 and 21.13%, whereas the depths of the scratches were decreased by 22.93 and 23.77% in DW and NS lubricating conditions, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39640.  相似文献   

15.
The continuous production of ultra‐high‐molecular‐weight polyethylene (UHMWPE) filaments was studied by the direct roll forming of nascent reactor powders followed by subsequent multistage orientation drawing below their melting points. The UHMWPE reactor powders used in this study were prepared by the polymerization of ethylene in the presence of soluble magnesium complexes, and they exhibited high yield even at low reaction temperatures. The unique, microporous powder morphology contributed to the successful compaction of the UHMWPE powders into coherent tapes below their melting temperatures. The small‐angle X‐ray scattering study of the compacted tapes revealed that folded‐chain crystals with a relatively long‐range order were formed during the compaction and were transformed into extended‐chain crystals as the draw ratio increased. Our results also reveal that the drawability and tensile and thermal properties of the filaments depended sensitively on both the polymerization and solid‐state processing conditions. The fiber drawn to a total draw ratio of 90 in the study had a tensile strength of 2.5 GPa and a tensile modulus of 130 GPa. Finally, the solid‐state drawn UHMWPE filaments were treated with O2 plasma, and the enhancement of the interfacial shear strength by the surface treatment is presented. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 718–730, 2005  相似文献   

16.
This article reports new‐generation 2D‐MoS2 nanosheet‐containing polyurethane (PU) composite materials with improved thermo‐mechanical stiffness, thermal stability, and fire retardation properties. The surface of 2D‐MoS2 nanosheets is modified with melamine (M‐MoS2), and then PU composites with varying M‐MoS2 loadings are synthesized using an in situ polymerization method. During polymerization, 3‐amino‐propyl‐trimethoxy silane is introduced to create silicate functionality on the PU chains, which further improves the compatibility between PU and M‐MoS2. Microscopy studies confirm the distribution of highly intercalated and agglomerated M‐MoS2 nanosheets in the PU matrix. The PU composite containing 5 wt% M‐MoS2 shows a 65% higher storage modulus (at 30 °C) than that of pure PU. The thermal stability of pure PU is significantly improved (62 °C) after composite formation. Thermogravimetric analysis in combination with FTIR spectroscopy shows that the PU/M‐MoS2 composites release less toxic gases during thermal degradation compared to pure PU. Moreover, the composite containing 5 wt% M‐MoS2 shows improved fire retardation properties, with 45% and 67.5% decrease in the peak heat and total heat release rates, respectively, as compared with those of pure PU. In summary, 2D‐MoS2 is shown to have potential as an advanced nano‐filler to obtain stiffer PU composite with improved fire retardant property for structural application.  相似文献   

17.
MoS2 coatings are well-known for their solid lubricant properties and used as self-lubricants in vacuum and inert gas environments, and such coatings are not used in atmospheric conditions because of their deteriorating tribology. The tribological performance of MoS2 solid lubricant coatings in the different atmospheres has been improved by the codeposition of a small amount of another metal. In this study, the tribological behavior of MoS2/Nb coatings was investigated in ambient air at temperatures up to 500°C by using high-temperature pin-on-disc tribo testers and alumina balls as counterfaces. MoS2/Nb coatings were deposited on silicon wafers and AISI 52100 steel substrate by closed-field unbalanced magnetron sputtering. The structural analyses of the coatings were performed using X-ray diffraction and scanning electron microscopy techniques. The hardness was measured using a microhardness tester.  相似文献   

18.
This is a comparative study between ultrahigh molecular weight polyethylene (UHMWPE) reinforced with micro‐ and nano‐hydroxyapatite (HA) under different filler content. The micro‐ and nano‐HA/UHMWPE composites were prepared by hot‐pressing method, and then compression strength, ball indentation hardness, creep resistance, friction, and wear properties were investigated. To explore mechanisms of these properties, differential scanning calorimetry, infrared spectrum, wettability, and scanning electron microscopy with energy dispersive spectrometry analysis were carried out on the samples. The results demonstrated that UHMWPE reinforced with micro‐ and nano‐HA would improve the ball indentation hardness, compression strength, creep resistance, wettability, and wear behavior. The mechanical properties for both micro‐ and nano‐HA/UHMWPE composites were comparable with pure UHMWPE. The mechanical properties of nano‐HA/UHMWPE composites are better compared with micro‐HA/UHMWPE composites and pure UHMWPE. The optimum filler quantity of micro‐ and nano‐HA/UHMWPE composites is found to be at 15 wt % and 10 wt %, separately. The micro‐ and nano‐HA/UHMWPE composites exhibit a low friction coefficient and good wear resistance at this content. The worn surface of HA/UHMWPE composites shows the wear mechanisms changed from furrow and scratch to surface rupture and delamination when the weight percent of micro‐ and nano‐HA exceed 15 wt % and 10 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42869.  相似文献   

19.
The dispersion ability of fluorene‐based epoxy resin (FBE), bisphenol A based epoxy resin (PBE), fluorene‐based polyester (FBP), and polycarbonate (PC) in carbon black (CB) was evaluated. CB/FBE composite had a lower L value (reflectance, blackness) than that of CB/PBE composite, for the same CB content. Aggregations of CB in CB/FBE composites were much smaller than those in CB/PBE composites. The strong interaction between fluorene with cardo structure and CB resulted in a fine dispersion of CB in FBE. FBP had much higher dispersion ability of CB than PC. CB (50 wt%) was dispersed into FBP compared with the 10 wt% of CB dispersed in PC by melt blending. The effect of CB on the mechanical properties of FBP was much higher than that on PC due to fine dispersion of CB in FBP. The effect of CB addition on the Tg of FBP was also higher than that of CB on the Tg of PC. Computational simulation indicates that most stable energy between fluorene with a cardo structure and graphite structure was smaller than the energy between bisphenol A and graphite. It was also shown that the minimum energy appeared when the fluorene structure was almost parallel to the graphite plane. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

20.
Novel glass fiber‐reinforced composites were prepared from E‐glass fibers and perfluoropolyether (PFPE), polyurethane acrylate, and methacrylate resins. The PFPE resins were synthesized by a two‐step process and formulated with reactive acrylic diluents obtaining two compositions with different viscosity and fluorine content. These formulations were photocrosslinked by UV‐A radiation and characterized by tensile and dynamic‐mechanical properties as well as by impact resistance. The two UV cured fluoropolymer compositions are high modulus (> 1 GPa), polyphasic materials characterized by a fracture toughness higher than conventional polymer matrices, like epoxies and unsaturated polyesters. Unidirectional laminate composites were also prepared by hand lay‐up and crosslinked both photochemically and thermally. Mechanical characterization of glass fiber‐reinforced composites was carried out by tensile tests and shear adhesion measurements, showing a good fluoropolymer‐glass adhesion strength (ca. 9 MPa). Surface characterization of composites by static contact angle measurements allowed the calculation of the total surface tension γs according to Wu's harmonic mean approximation. Surface tension is very low (< 20 mN/m) suggesting a preferential stratification of PFPE segments at the material‐air interface.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号