首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of hollow/microporous yarns plays an important role in enhancing the thermo‐physiological comfort properties of fabrics. Depending on structural variations in hollow yarn, heat and moisture regulation behaviours of fabrics can be affected significantly. In this study, three types of hollow cotton yarn fabrics, produced by introducing polyvinyl alcohol (PVA) filament in the core, PVA staple fibres in the blend and PVA filament in doubling with cotton spun yarn, are studied. All three types of pre‐hollow yarns and reference yarns are made with a variation in spinning technique (single roving/double roving) to prepare eight single jersey knitted fabrics. The hollow/microporous structure of the yarn is created by dissolving the PVA fibres using hot washing of the fabrics. On overall evaluation of the fabric’s thermo‐physiological comfort properties, the doubled hollow yarn fabrics are found to be better than other fabrics. In general, thermal resistance, thermal absorptivity, wicking and drying properties of all types of hollow yarn fabrics increase after repeated laundering, while air permeability, water vapour permeability and water absorbency of hollow yarn fabrics mostly decrease. In contrast with fabrics made from yarn produced through single roving technique, use of double roving technique only improves fabric water vapour permeability.  相似文献   

2.
The present work is concerned with the study of the characteristics of plain woven fabric produced with cotton-acrylic high-bulk yarns from different spinning technologies. The effects of different factors, namely spinning technologies (ring, rotor and DREF-II, i.e. Group A fabrics), position of shrinkable acrylic feed sliver in DREF-II friction spinning system (Group B fabrics) and proportion of shrinkable acrylic core fibre in core-sheath type DREF-III friction spun yarns (Group C fabrics) on various properties of cotton-acrylic blended bulked yarn fabrics have been reported. The influence of these three variables on the mechanical, handle and comfort properties of fabrics have been studied. The properties of fabrics made of bulked yarns from different spinning technologies are found to be different from the normal 100% cotton yarn fabrics in all respect. Even though the bulked yarns were used only in weft direction, the fabrics with modified yarn structures show appreciable improvement in thermal resistance, moisture vapour transmission, wicking and air permeability. The bending rigidity of the fabrics in weft direction also reduced with improvement in crease recovery in weft direction.  相似文献   

3.
Mine Akgun 《纺织学会志》2013,104(4):383-391
Effect of abrasion on surface roughness properties of textured polyester woven fabrics has been investigated. The effects of weft density, weft yarn filament number, fiber fineness, and weave pattern on surface roughness after abrasion were studied. Surface roughness values of control fabric (not abraded) and abraded fabrics after four different abrasion cycles were discussed according to different constructional parameters. Surface roughness values of fabrics changed according to abrasion cycles and the changes were related to yarn float lengths, yarn densities, yarn fiber fineness, and initial fabric surface roughness. A general overview of the results showed that abrasion eliminated the effect of texture especially at the fabric samples with initially high surface roughness. The surface roughness of fabrics with initially high surface roughness decreased at a greater extent than the ones with low surface roughness after abrasion. Fabrics with high surface roughness were affected more by abrasion and the effect of abrasion on rough surfaces depended on different manners regarding the compactness of woven structures.  相似文献   

4.
Electronic textiles are recognized for their conductive characteristics in various fields of research including medicine, communications, power and for the development of protective clothing. Out of the several types of conductive textile available, multi-component yarns and fabrics, produced from continuous copper filament as spiral covering on hybrid cover yarns, have never been investigated for their thermal capabilities. In this study, characterization based on the thermal properties for conventional copper core yarn’s fabric and newly developed copper cover yarn’s fabrics was carried out. The results demonstrate better conductivity of copper cover yarn’s fabrics as compared to the copper core conventional fabrics, which is attributed to its better conduction due to greater percentage of copper and direct contact between the heat flux transducers. With the higher porosity values for the newly developed fabric, the liquid water, water vapour and air transport capabilities, which are key aspects of thermal comfort, significantly improved.  相似文献   

5.
The present study reports the effect of linear densities and profiles of polyester fibres on the physiological properties of their fabrics. Four different polyester fibre finenesses along with microdenier and four cross-sectional shapes (circular, scalloped oval, tetrakelion and trilobal) were selected to produce two sets of 2/1 twill fabrics; one composed of 100% polyester and the other 67:33 P/V blends. In studying the thermophysiological component of the clothing comfort, heat, air and moisture transmission characteristics of the fabrics were assessed. The principal thermal properties, such as thermal absorptivity, thermal resistance and thermal conductivity, were experimentally evaluated, using the Alambeta instrument. The study of the obtained results established the fabrics of non-circular cross-sections as against circular ones, and increase in the linear density results in higher thermal resistance, lower thermal conductivity and lower thermal absorptivity. Wicking behaviour of fabrics was studied under two conditions–wicking from an infinite liquid reservoir (transverse wicking) and wicking from a finite liquid reservoir (single drop wicking into the fabrics). Increase in fibre linear density enhances transplaner wicking but slows down the spreading speed of water drops. Air permeability and moisture vapour permeability are found to be positively correlated with fibre decitex. The role of fibre cross-sectional shapes in influencing mass-flow characteristics is quite considerable. Use of non-circular polyester in place of a circular one augments the wickability of liquid water along with the permeability of air and moisture vapour through the fabrics, revealing their high porosity, which assists air and moisture to propagate. Mixing viscose into polyester brings down the air permeability and moisture vapour transmission rate (MVTR) of fabrics. Results show that moisture absorption of viscose is an important factor in influencing the moisture transport characteristics including both wickability and MVTR of 100% viscose and P/V-blended fabrics.  相似文献   

6.
In this study, the thermal comfort properties of single jersey fabrics produced by conventional and hollow cotton yarns with different hollowness ratio have been investigated and compared. For this purpose, thermal conductivity, thermal resistance, thermal absorptivity, air permeability and water vapour permeability of core spun, hollow and conventional yarn fabrics were measured and evaluated statistically. It was observed that thermal comfort properties of single jersey fabrics were affected by the yarn structure and the fibre distribution within the yarn. The results showed that hollow yarn fabrics had better thermal comfort properties than that of conventional yarn fabrics. In hollow yarns, as the hollowness ratio increases, air permeability and thermal conductivity of single jersey fabrics decrease but thermal resistance, thermal absorptivity and water vapour permeability increase. Statistical analysis also indicated that the differences between properties of hollow yarn fabrics and conventional yarn fabrics were significant. Furthermore, the yarn hollowness ratio significantly affects thermal comfort properties of single jersey fabrics.  相似文献   

7.
Double-face knitted fabrics with hydrophobic inner and hydrophilic outer layers are characterised by their advantageous thermo-physiological comfort property that facilitates the transport of sweat from skin to outer fabric layer where it can be evaporated easily. In this study, for the production of double-face knitted fabrics, cotton yarn as hydrophilic yarn type and five different polyester filament yarns consisting of standard polyester, hollow polyester, micro polyester, textured polyester and textured micro polyester as hydrophobic yarn type were used. In order to determine the thermo-physiological comfort properties of the fabrics, air permeability, water vapour permeability, thermal conductivity, thermal resistance and overall moisture management capacity were measured. The results were comparatively analysed using statistical methods. The experimental results demonstrated that the polyester-type yarns and the combinations of them with the cotton yarn in fabric layers affected the thermo-physiological comfort properties significantly. The fabrics with polyester-type inner face and cotton outer face showed the best moisture transmission properties.  相似文献   

8.
Protective clothing protects the body from external influence like heat, chemicals, mechanical hazards, bad weather, etc. by shielding the human body from harsh environmental effects. The maintenance of thermal balance is one of the most important aspects of protective clothing. The study aims to investigate the thermal comfort properties of woven hybrid fabrics produced with high performance core spun yarns. For this purpose, meta-aramid, e-glass, Technora® and Dyneema® fibres were combined using core yarn spinning method in order to enhance the protective performance characteristics. The effects of the core/sheath ratio and type of core materials on the thermal comfort characteristics were investigated and evaluated statistically. The results revealed that, core/sheath ratio, types of core materials have significant effects on thermal comfort characteristics of the fabrics. As the core ratio increases from 19 to 56%, the air permeability of the fabrics increases whereas their thermal conductivity and thermal absorptivity properties decrease. Meta-aramid/E-glass core fabrics can be preferable for protective clothing due to high air permeability and thermal conductivity values.  相似文献   

9.
The physiological comfort determined by air permeability and moisture management properties of fabrics is influenced by various constructional parameters of the fabric which give woven fabric a porous structure. Evaporation of sweat during wear has the potential to cool the body besides restricting the additional weight of sweat being absorbed by the fabric. In this study, comfort characteristics of denim fabrics with different weft yarn of cotton, polyester and core spun Lycra have been discussed. Effect of enzyme washing and repeated laundering on air permeability, moisture management and drying rate has also been discussed. It was observed that air permeability and water vapour permeability of unwashed denim fabrics with cotton weft yarn are significantly higher than the fabric with polyester and Lycra cotton weft yarns. The wetting time is higher for cotton and Lycra cotton yarn fabrics. One-way transport index is highest for Lycra cotton weft fabrics and lowest for fabrics with polyester weft. Fabrics with polyester weft yarns show highest spreading rate, spreading radius and drying rate due to better wicking and hydrophobic nature of polyester fibres.  相似文献   

10.
In this study, effect of fabric structural parameters of double-face woven fabrics including kind of porous yarn namely micro-porous yarn and hollow yarn, hole size of hollow yarn, percentage of these yarns in double-face woven fabric structure, and finally weft density on air permeability and moisture transfer of woven fabrics was evaluated. These yarns were produced by using water-soluble continuous polyvinyl alcohol filaments as core part for hollow yarns and as doubling yarn in micro-porous yarn. Results revealed the effect of kind of porous yarn, hole size of hollow yarn, and weft density on air permeability and moisture transfer of woven fabrics. The percentage of porous yarns as weft did not show obvious trend. Analysis of variance was used to study the effect of these variables on air permeability and moisture transfer of double-face woven fabrics statistically.  相似文献   

11.
The transmission property of a fabric is a key factor that affects clothing’s comfort and decides the functional potential of clothing. The dependence of filament cross-section with varying shape factor (SF) on air, moisture and thermal transmission behaviour of fabric is determined in case of polyester multifilament woven fabrics. The linear density of each filament is kept identical for all 12 cross-section shape filaments. The SF of filament cross-section is an important factor which remained the prime factor to influence the transmission behaviour of fabric samples directly in many cases. Other indirect factors that influence the transmission behaviour of fabrics when the SF is identical are yarn structure, inter-fibre and inter-yarn space. Twelve different novel cross-sectional shapes are considered to make the multifilament woven polyester fabrics. The fabrics made from multifilament yarns having different SFs show that relative moisture vapour permeability and air permeability decrease with the rise in SF. Wickability increases with the rise in the SF of a filament cross-section. Multilobal, hexalobal and plus shapes were made a part of novel cross-sectional shapes in order to develop fabrics of higher comfort index.  相似文献   

12.
为研究聚酯(PET)长丝/棉复合纱斜纹织物的保形性及服用性能,利用PET长丝与纯棉纱开发了3种线密度为9.8 tex的纱线,并以二上二下斜纹组织织造了4种织物。对织物进行了折皱回复性、免烫性、尺寸稳定性、悬垂性等保形性能,强伸性、拉伸弹性、顶破性等抗变形性测试,以及手感风格、透湿性、透气性等服用性能测试。对比分析了纯棉纱织物与复合纱织物的保形性与服用性能。结果表明:PET长丝/棉复合纱可改善纯棉织物的折皱回复性、悬垂性,提高免烫等级,同时又不影响织物的服用性能;包芯纱织物比包缠纱织物有更好的保形性,更高的免烫等级,是免烫衬衫面料的理想选择。  相似文献   

13.
E. Öner  A. Okur 《纺织学会志》2013,104(12):1403-1414
Thermal comfort is one of the most important components of comfort which shows physiological, psychological, and physical harmony between human body and environment. The heat and moisture transfer capacity of fabric from skin to environment affects the thermal comfort of garments. The transfer capacity depends on the characteristic features of raw materials and fabric structural properties. In this study, it is aimed to determine the advantages of knitted fabric types, taking into account the environmental condition and activity level by measuring the thermal comfort properties such as air permeability, wicking, moisture management, thermal and water vapor resistances. Two knitted structures composed of tuck and float combinations and six raw materials were chosen for the fabrics produced. According to the measurement results, the polyester and cotton/Coolmax fabrics with float stitches have had good liquid moisture transport properties. Besides, high air permeability and low water vapor resistance have been obtained in viscose and Tencel LF fabrics with tuck stitches. On the basis of the results obtained in this investigation, and taking into consideration thermal behavior of human body, four women’s and five men’s T-shirts are designed. These T-shirt designs may be helpful for further approaches on the optimization of thermal comfort for sports activities in hot environment.  相似文献   

14.
为研究吸湿发热保暖机织物的热湿舒适性,开发了6种不同结构的改性聚丙烯酸类纤维吸湿发热机织物。通过热湿舒适相关性能测试与分析,得出不同机织物结构参数对透气性、热阻、芯吸高度、液态水分管理以及吸湿发热性能的影响规律,为设计出兼具吸湿发热和导湿排汗性能的热湿舒适机织物提供参考。经测试发现:蜂巢组织能明显改善织物的保暖性和透气性,且织物由内层向外层形成回潮率递增的梯度结构,对水分管理和提高单向导湿性能有积极作用,三层蜂巢组织在提升织物吸湿发热性能上具有一定潜力。  相似文献   

15.
介绍了仿棉聚酯纤维与棉的混纺纱的性能,选用4种仿棉聚酯纤维/棉混纺纱、氨纶丝、低弹涤纶丝交织,开发了平针添纱织物、平针衬垫拉绒织物、绗缝织物3种保暖针织物,测试分析其性能。结果表明:仿棉聚酯纤维/棉混纺纱针织物具有良好的保暖性、抗起毛起球性及服用舒适性,是开发保暖服装的理想原料。  相似文献   

16.
为研究吸湿发热保暖机织物的热湿舒适性,开发了6种不同结构的改性聚丙烯酸类纤维吸湿发热机织物。通过热湿舒适相关性能测试与分析,得出不同机织物结构参数对透气性、热阻、芯吸高度、液态水分管理以及吸湿发热性能的影响规律,为设计出兼具吸湿发热和导湿排汗性能的热湿舒适机织物提供参考。经测试发现:蜂巢组织能明显改善织物的保暖性和透气性,且织物由内层向外层形成回潮率递增的梯度结构,对水分管理和提高单向导湿性能有积极作用,三层蜂巢组织在提升织物吸湿发热性能上具有一定潜力。  相似文献   

17.
Mine Akgun 《纺织学会志》2013,104(8):845-852
Surface roughness properties of wool fabrics are one of the important parameters of clothing quality and hand feeling. This paper presents a comparison between surface roughness characteristics of wool fabrics produced from different constructional parameters such as warp and weft yarn density, weft yarn count, and weave pattern. Roughness values of fabrics were affected by constructional parameters and the effects were related to fabric cover, fabric thickness, and crimps of yarns in fabric structure. A general overview of the results showed that surface roughness of wool fabrics decreased and the effect of changes in structural construction decreased as cover of fabrics increased.  相似文献   

18.
This study investigated the vertical wicking, water absorption and drying properties of vortex- and ring-spun combed cotton yarns and knitted fabrics comparatively. The yarns were produced in three different counts as 30 Ne, 40 Ne and 50 Ne. The experimental results revealed that vortex-spun yarns had lower yarn and fabric wicking and water absorption values than ring-spun yarns. In addition, it was observed that yarn type did not have a significant impact on the drying time of the fabrics.  相似文献   

19.
选择8种不同的羊毛与普通涤纶、37.5涤纶混纺针织物试样,测试试样的密度、面密度、未充满系数和厚度等基本参数,以及回潮率、透气率、芯吸高度、瞬间接触凉感(Q-max)及恒定加热条件下的干、湿态升温性能等织物的热湿舒适性能,分析和评价了针织物的基本参数对其热湿舒适性能的影响。试验结果显示,与普通涤纶相比,采用37.5涤纶有助于提高织物的回潮率、芯吸高度和Q-max;透气率随针织物未充满系数的增大而增大;当织物的纤维组成成分基本一致,组织结构相同时,针织物的面密度越大,透气性越差;含37.5涤纶的纬平针织物的瞬间接触凉感性能较好。  相似文献   

20.
Moisture transmission properties are most important for fabric comfort. We have studied the moisture transmission properties of the plain-woven fabric produced with polyester–viscose-(PV) blended yarns. PV-blended yarns of varying blend proportion, yarn count and twist levels have been used for fabric manufacture. A three-variable Box and Behnken factorial design technique has been used to study the interaction effects of the above variables on the aforesaid characteristics of fabrics. The interactive effect of these three variables on the air permeability, water vapour permeability, in-plane wicking and vertical wicking of PV-blended fabrics has been studied and the response surface equations for all the properties have been derived; also, the design variables have been optimized for all the moisture transmission-related properties. Most of the moisture transmission characteristics were found to be affected significantly by blend proportion, count and twist levels at 95% level of significance with the present variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号