首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel single-stage series-resonant buck–boost inverter (SRBBI) is proposed in this paper. The main attribute of the novel inverter topology is the fact that it generates an ac output voltage larger or lower than the dc input one, depending on the instantaneous duty cycle. This property is not found in the classical voltage-source inverter, which produces an ac output instantaneous voltage which always lower than the dc input voltage. The state-space averaging approach is used to estimate and examine the steady-state and dynamic character of the new single-stage SRBBI. The principle of operation, theoretical analysis, and experimental results of the proposed inverter, rated 500 W and operating at 40 kHz, are provided in this paper to verify the performance of the SRBBI.  相似文献   

2.
This paper presents a new single-stage power factor correction ac/dc converter based on a three-level half-bridge resonant converter topology. The proposed circuit integrates the operation of the boost power factor preregulator and the three-level resonant dc/dc converter. A variable-frequency asymmetrical pulsewidth modulation controller is proposed for this converter. This control technique is based on two integrated control loops: the output voltage is regulated by controlling the switching frequency of the resonant converter, whereas the dc-bus voltage and input current are regulated by means of duty cycle control of the boost part of the converter. This provides a regulated output voltage and a nearly constant dc-bus voltage regardless of the loading condition; this, in turn, allows using smaller switches and consequently having a lower on resistance helping to reduce conduction losses. Zero-voltage switching is also achieved for a wide range of loading and input voltage. The resulting circuit, therefore, has high conversion efficiency making it suitable for high-power wide-input-voltage-range applications. The effectiveness of this method is verified on a 2.3-kW 48-V converter with input voltage (90–265 Vrms).   相似文献   

3.
A new four-switch full-bridge dc-dc converter topology is especially well-suited for power converters operating from high input voltage: it imposes only half of the input voltage across each of the four switches. The two legs of a full-bridge converter are connected in series with each other, across the dc input source, instead of the usual topology in which each leg is connected across the dc source. The topology reduces turn-off switching losses by providing capacitive snubbing of the turn-off voltage transient, and eliminates capacitor-discharge turn-on losses by providing zero-voltage turn-on. (Switching losses are especially important in converters operating at high input voltage because turn-on losses are proportional to the square of the input voltage, and turn-off losses are proportional to the input voltage). The topology is suitable for resonant and nonresonant converters. It adds one bypass capacitor and one commutating inductor to the minimum-topology full-bridge converter (that inductor is already present in many present-day converters, to provide zero-voltage turn-on, or is associated with one or two capacitors to provide resonant operation), and contains a dc-blocking capacitor in series with the output transformer, primary winding, and some nonresonant converters (that capacitor is already present in resonant power converters). The paper gives a theoretical analysis, and experimental data on a 1.5-kW example that was built and tested: 600-Vdc input, 60-Vdc output at up to 25A, and 50-kHz switching frequency. The measured performance agreed well with the theoretical predictions. The measured efficiency was 93.6% at full load, and was a maximum of 95.15% at 44.8% load.  相似文献   

4.
This paper presents an efficient multilevel-synthesis scheme and its application to a 27-level inverter. In the proposed multilevel scheme, this can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each transformer terminal voltage. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of transformers rather than the accumulation of capacitor voltage sources. A 27-level inverter consists of three full-bridge modules and their corresponding transformers. Quasi-sinusoidal voltage waves can be generated from a suitable selection of the turns ratio of the transformer. The validity of the proposed system is verified by computer-aided simulation and experimental results using a 500-W prototype, which can generate a 110-V ac output voltage from a 12-V dc input.  相似文献   

5.
王强  李兵  王天施  刘晓琴 《电子学报》2019,47(9):2012-2016
为改善直流电压利用率,提出了一种具有提升直流环节稳态电压功能的单相全桥谐振直流环节软开关逆变器,利用辅助电路中的变压器可以将电能补充到直流母线上等效为电压源的钳位电容,使直流环节稳态电压高于直流电源电压,提高了逆变器输出线电压的基波幅值和直流电压利用率.文中分析了电路的工作状态.在4kW样机上的实验结果表明逆变器的主开关和辅助开关能完成软切换.因此,该拓扑结构对于研发高性能谐振直流环节逆变器具有一定的借鉴意义.  相似文献   

6.
A soft-commutating method and control scheme for an isolated boost full bridge converter is proposed in this paper to implement dual operation of the well-known soft-switching full bridge dc/dc buck converter for bidirectional high power applications. It provides a unique commutation logic to minimize a mismatch between current in the current-fed inductor and current in the leakage inductance of the transformer when commutation takes place, significantly reducing the power rating for a voltage clamping snubber and enabling use of a simple passive clamped snubber. To minimize the mismatch, the method and control scheme utilizes the resonant tank and freewheeling path in the existing full bridge inverter at the voltage-fed side to preset the current in the leakage inductance of the transformer in a resonant manner. Zero-voltage-switching is also achieved for all the switches at the voltage-fed side inverter in boost mode operation. The proposed soft-commutating method is verified through boost mode operation of a 3-kW bidirectional isolated full bridge dc/dc converter developed for fuel cell electric vehicle applications. The tested result verified the isolated boost converter can operate at an input voltage of 8.5–15V and an output voltage of 250–420V with a peak efficiency of 93% and an average efficiency of 88% at 55-kHz switching frequency with 72$^circ$C automotive coolant.  相似文献   

7.
A boost DC-AC converter: analysis, design, and experimentation   总被引:20,自引:0,他引:20  
This paper proposes a new voltage source inverter (VSI) referred to as a boost inverter or boost DC-AC converter. The main attribute of the new inverter topology is the fact that it generates an AC output voltage larger than the DC input one, depending on the instantaneous duty cycle. This property is not found in the classical VSI, which produces an AC output instantaneous voltage always lower than the DC input one. For the purpose of optimizing the boost inverter dynamics, while ensuring correct operation in any working condition, a sliding mode controller is proposed. The main advantage of the sliding mode control over the classical control schemes is its robustness for plant parameter variations, which leads to invariant dynamics and steady-state response in the ideal case. Operation, analysis, control strategy, and experimental results are included in this paper. The new inverter is intended to be used in uninterruptible power supply (UPS) and AC driver systems design whenever an AC voltage larger than the DC link voltage is needed, with no need of a second power conversion stage  相似文献   

8.
This paper proposes the analysis of the instantaneous power flow of three-phase pulse-width modulation (PWM) boost rectifier under unbalanced supply voltage conditions. An analytical expression for the instantaneous output power has been derived, which provides the link between the output dc link voltage and the instantaneous output power. A direct relationship between the dc link voltage ripples and the second harmonic component in the instantaneous output power has been established. Based on the input and output instantaneous power analytical expressions provided, the presence of the odd order harmonic components in the ac line currents can be explained. A simple cascaded PI control scheme has been developed for the dc output voltage control. The controller ensures that the dc link voltage is maintained constant and the supply side power factor is kept close to unity under the unbalanced supply voltage operating conditions. Simulation and experimental test results are provided on a 1.6-kVA laboratory-based PWM rectifier to validate the proposed analysis and control scheme.   相似文献   

9.
This paper proposes a novel control scheme of single-phase-to-three-phase pulsewidth-modulation (PWM) converters for low-power three-phase induction motor drives, where a single-phase half-bridge PWM rectifier and a two-leg inverter are used. With this converter topology, the number of switching devices is reduced to six from ten in the case of full-bridge rectifier and three-leg inverter systems. In addition, the source voltage sensor is eliminated with a state observer, which controls the deviation between the model current and the system current to be zero. A simple scalar voltage modulation method is used for a two-leg inverter, and a new technique to eliminate the effect of the dc-link voltage ripple on the inverter output current is proposed. Although the converter topology itself is of lower cost than the conventional one, it retains the same functions such as sinusoidal input current, unity power factor, dc-link voltage control, bidirectional power flow, and variable-voltage and variable-frequency output voltage. The experimental results for the V/f control of 3-hp induction motor drives controlled by a digital signal processor TMS320C31 chip have verified the effectiveness of the proposed scheme  相似文献   

10.
This paper presents a new high-efficiency grid-connected single-phase converter for fuel cells. It consists of a two-stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25?V–45?V) this voltage must be transformed to around 350–400?V in order to be able to invert this dc power into ac power to the grid. The proposed converter consists of an isolated dc–dc converter cascaded with a single-phase H-bridge inverter. The dc–dc converter is a current-fed push-pull converter. The inverter is controlled as a standard single-phase power factor controller with resistor emulation at the output. Experimental results of converter efficiency, grid performance and fuel cell dynamic response are shown for a 1?kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92%) and the inverter operates with a near-unity power factor and a low current THD.  相似文献   

11.
The schematic and analysis of a voltage-fed resonant inverter are presented in this paper. The topology of the inverter allows operation of the resonant tank at higher harmonics and multiples of the switching frequency. The resulting loss in voltage gain is compensated through the use of multiple commutation poles employing low-cost modestly rated MOSFETs. The proposed topology can control power throughput at a fixed frequency through pole phase-shift modulation. Zero voltage switching is maintained down to no load and within the entire input voltage range. Measurements from a multimegahertz 100-W inverter confirm the theoretical predictions, as well as the suggested design and control approach.  相似文献   

12.
A Multilevel Inverter Topology for Inductively Coupled Power Transfer   总被引:1,自引:0,他引:1  
This paper describes a multilevel inverter that can synthesize quantized approximations of arbitrary ac waveforms. This converter could be used to deliver power over multiple frequencies simultaneously. Unlike traditional multilevel inverters, this topology does not require an external voltage balancing circuit, a complicated control scheme, or isolated dc sources to maintain its voltage levels while delivering sustained real power. In this paper, we use this circuit for heating frequency selectable induction targets designed to stimulate temperature sensitive polymer gel actuators. For this application our multilevel inverter offers higher efficiency than a pulse width modulated full-bridge inverter (a more conventional power supply solution) at comparable levels of total harmonic distortion  相似文献   

13.
A two-stage, two-wire TRIAC dimmable electronic ballast for fluorescent lamps is presented in this paper. It is constructed by using a flyback converter as the input power factor corrector to supply a half-bridge series-resonant parallel-loaded inverter to ballast the lamp. The flyback converter is operated in discontinuous conduction mode so that the filtered input current profile is the same as the TRIAC-controlled voltage waveform. The switches in the inverter are switched at a constant frequency slightly higher than the resonant frequency of the resonant tank. Based on the constant average input current characteristics of the inverter, the dimming operation is simply achieved by pulsewidth modulation control of the magnitude of the flyback converter output voltage. No synchronization network is required between the input and output stages. In addition, a linear power equalization scheme is developed so that the dc-link voltage (and hence the lamp power) is in a linear relationship with the firing angle of the TRIAC. The average output voltage of the dimmer controls the equalized flyback converter output voltage. Modeling, analysis, and design of the ballast will be described. A prototype was implemented to verify the experimental measurements with the theoretical predictions.  相似文献   

14.
王强  王有政  王天施  刘晓琴 《电子学报》2000,48(11):2263-2266
中小功率单相全桥逆变器常以金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)作为开关器件,为实现逆变器在高开关频率下的节能运行,本文提出了一种单相全桥节能型谐振极逆变器拓扑结构,其桥臂上分别并联相同的辅助谐振电路.桥臂上的主开关开通前,其并联的谐振电容的电压能周期性变为零,使主开关完成零电压软开通,可消除MOSFET的容性开通损耗,有利于逆变器的节能运行.本文分析了电路的工作模态,实验结果表明主开关器件处于零电压软切换.因此,该拓扑结构对于研发高性能的中小功率单相全桥逆变器具有参考价值.  相似文献   

15.
This paper proposed an isolated bridgeless AC–DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input–output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.  相似文献   

16.
In this paper, a new parallel-connected single phase power factor correction (PFC) topology using two flyback converters is proposed to improve the output voltage regulation with simultaneous input power factor correction and control. This approach offers lower cost and higher efficiency by parallel processing of the total power. Flyback converter-I primarily regulates output voltage with fast dynamic response and processes 55% of the power. Flyback converter-II with ac/dc PFC stage regulates input current shaping and PFC, and processes the remaining 45% of the power. This paper presents a design example and circuit analysis for 200 W power supply. A parallel-connected interleaved structure offers smaller passive components, less losses even in continuous conduction inductor current mode, and reduced volt-ampere rating of dc/dc stage converter. TI-DSP, TMS320LF2407, is used for implementation. Simulation and experimental results show the performance improvement.  相似文献   

17.
A capacitor-clamped voltage-source inverter for active power filter operation under balanced and unbalanced conditions is proposed to suppress current harmonics and compensate the reactive power generated from the nonlinear loads. The adopted voltage-source inverter is based on a three-level capacitor-clamped topology to reduce the voltage stress of power semiconductors. Two control loops are used in the control scheme to achieve harmonic and reactive currents compensation and to regulate the inverter dc side voltage. In the adopted inverter, the neutral point voltage is compensated by a voltage compensator to obtain the balanced capacitor voltages on the dc side. In order to control the flying capacitor voltages, two redundant states in each inverter leg can be selected to compensate the flying capacitor to obtain a better voltage waveform with low harmonic contents on the ac terminals. The balanced and sinusoidal line currents are drawn from the ac source under the balanced and unbalanced conditions. The feasibility of the proposed scheme is confirmed through experimental results  相似文献   

18.
A new single-stage power factor corrected ac–dc converter for universal line applications is proposed in this paper. This converter has a buck topology as a power factor corrector. The dc bus voltage of the proposed converter is always lower than the peak input voltage at any load condition. Therefore, the problem of high dc bus voltage under the light load condition for the single-stage converter is solved, especially in the case of universal line applications. The design equations are presented for the proposed converter and a design example for a 5V 12A application is presented. The theoretical analysis and experimental results show that the dc bus voltage can be limited within 260V and the line input current harmonics can meet IEC 61000-3-2 Class D requirements at any load conditions for the line input voltages from 90 to 260Vac.  相似文献   

19.
The controlled-capacitor-charging (CCC) technique is utilized in this paper to synthesize a sinusoidal voltage at the output from the unregulated dc at the input. The method is based on the controlled charging/discharging of a capacitor to realize the desired voltage waveform. A capacitor that is connected across the load is charged/discharged through an inductor by applying high-frequency pulses. The applied pulses could be of either positive or negative polarity, depending on the error signal in the controller. The controller senses the output voltage and current and operates to maintain zero-current switching at every turn-on while keeping the output voltage close to the reference waveform by a tracking-control algorithm, enforcing limits in maximum switching frequency and voltage ripples. This paper presents a direct method of implementing the pulsewidth modulation for the single-phase full-bridge inverter, using the CCC technique. A simple procedure to design such an inverter is also discussed. The proposed controller is simulated in a personal computer simulation program with integrated circuit emphasis. Supporting results from an experimental prototype confirm the usefulness of the proposed controller. The inverter may be used in uninterruptible power supply and many other applications.   相似文献   

20.
A high-efficiency fuel cell power conditioning system with input current ripple reduction is proposed. The proposed system consists of a high-efficiency high-step-up current-fed resonant push–pull converter and a full-bridge inverter. The converter conserves inherent advantages of a conventional current-fed push–pull converter such as low input-current stress and high voltage conversion ratio. Also, a voltage-doubler rectifier is employed in order to remove the reverse-recovery problem of the output rectifying diodes and provide much higher voltage conversion ratio. The current ripple reduction control without an external component is suggested. Therefore, the proposed system operates in a wide input-voltage range with a high efficiency. By using a current-ripple reduction control, the input current ripple is furthermore reduced. A 1.5-kW prototype is implemented with input-voltage range from 30 to 70 V. Experimental results show that minimum efficiency at full load is about 92.5% and that ripple current is less than 2% of the rated input current.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号