首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
对锻造态Ti-6Al-4V-4Zr-1.5Mo合金采用不同的热处理工艺得到等轴、双态和网篮3种组织。使用分离式Hopkinson Bar技术对3种组织的试样进行动态剪切试验,研究了不同微观组织对该合金绝热剪切敏感性的影响。结果表明:当加载条件高于其临界应变率时,不同组织试样的承载时间均随着应变率的提高而降低;微观组织对该合金的绝热剪切敏感性影响较大,网篮组织绝热剪切敏感性最低,双态组织绝热剪切敏感性最高;双态组织剪切带附近基体相界处出现微裂纹,是造成其易于发生剪切破坏的主要原因。  相似文献   

2.
The present article evaluates the influence of independent control factors such as microstructural variation, normal load, sliding velocity, and test duration on dry sliding wear behavior of Ti-6Al-4V alloy at room temperature using a statistical approach. Ti-6Al-4V alloy has been heat treated in a controlled manner in order to produce different microstructural features (i.e., lamellar, bimodal, and equiaxed). Lamellar microstructure is found to be harder than bimodal microstructure followed by equiaxed microstructure in Ti-6Al-4V alloy. Dry sliding wear tests have been carried out using a multiple Tribo tester following a well planned experimental schedule based on Taguchi’s L9 orthogonal array design. Dry sliding wear behavior of Ti-6Al-4V alloy consisting of various microstructural features is related to their hardness values. Results indicated that lamellar microstructure has the lowest sliding wear resistance followed by bimodal and equiaxed microstructure. With the help of signal-to-noise ratios, optimal combination of control factors to minimize the dry sliding wear in Ti-6Al-4V alloy has been determined. Normal load is the most significant control factor influencing the dry sliding wear behavior of investigated Ti-6Al-4V alloy followed by sliding velocity, test duration, and microstructural variation. Normal load has greater static influence of 27.02%, sliding velocity has an influence of 18.07%, test duration has an influence of 12.71%, and microstructural variation has an influence of 10.55% on weight loss of Ti-6Al-4V alloy due to wear having R 2 = 0.89. Two wear mechanisms have been identified: oxidative wear occurs at the lowest sliding velocity and delamination wear occurs at the highest sliding velocity. Optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Rockwell hardness measurements have been used to characterize the microstructures in order to correlate the results obtained.  相似文献   

3.
Adiabatic shear band (ASB) is an important material’s phenomenon often observed in metals when processed at high strain rates. The microstructure and microtexture of ASBs in Ti-6Al-4V alloy with lamellar microstructure deformed by the dynamic loads were investigated by means of Light Microscope, Scanning Electron Microscopy/Electron Back-Scattered Diffraction, and Transmission Electron Microscopy. Close to the boundary of the shear band, highly elongated subgrains with thick cell walls were observed. The core of ASB consists of very fine equiaxed grains with low density of dislocations. New phases are generated in the core of shear band. According to the orientation distribution, the textures in the core of ASB peaked at (45°,5°, 0°), (89°,29°, 0°), (15°,10°, 30°), and (75°,5°, 30°); and the grain boundaries in ASB are geometrical necessary boundaries with high angles. Calculations of temperature rise suggest that the temperature in ASB is above the recrystallization point. Finally, the formation of an ASB in the Ti-6Al-4V alloy and its microstructure evolution are described as a consequence of the rotational dynamic recrystallization.  相似文献   

4.
Tao  Pan  Li  Huai-xue  Huang  Bai-ying  Hu  Quan-dong  Gong  Shui-li  Xu  Qing-yan 《中国铸造》2018,15(4):243-252
Selective laser melting(SLM) is a powerful additive manufacturing(AM) technology, of which the most prominent advantage is the ability to produce components with a complex geometry. The service performances of the SLM-processed components depend on the microstructure and surface quality. In this work, the microstructures, mechanical properties, and fracture behaviors of SLM-processed Ti-6 Al-4 V alloy under machined and as-built surfaces after annealing treatments and hot isostatic pressing(HIP) were investigated. The microstructures were analyzed by optical microscope(OM), scanning electron microscope(SEM) and transmission electron microscopy(TEM). The mechanical properties were measured by tensile testing at room temperature. The results indicate that the as-deposited microstructures are characterized by columnar grains and fine brittle martensite and the asdeposited properties present high strength, low ductility and obvious anisotropy. After annealing at 800-900°C for 2-4 h and HIP at 920°C/100 MPa for 2 h, the brittle martensite could be transformed into ductile lamellar(α+β) microstructure and the static tensile properties of SLM-processed Ti-6 Al-4 V alloys in the machined condition could be comparable to that of wrought materials. Even after HIP treatment, the as-built surfaces could decrease the ductility and reduction of area of SLM-processed Ti-6 Al-4 V alloys to 9.2% and 20%, respectively. The crack initiation could occur at the columnar grain boundaries or at the as-built surfaces. The lamellar(α+β) microstructures and columnar grains could hinder or distort the crack propagation path during tensile tests.  相似文献   

5.
The tensile properties and fracture behaviors of Ti-22Al-27Nb and Ti-22Al-20Nb-7Ta alloys were investigated in the temperature range of 25-800℃ Three typical microstructures were obtained by ifferent thermomechanical processing techniques.The results indicate that the duplex microstructure has an optimum combination of tensile yield strength and ductility both at room and elevated temperatures.Adding Ta to Ti2AlNb alloy can improve the yield strength,especially at high temperature while retain a good ductility.The study on crack initiation and propagation in dedformed microstructure of Ti2AlNb alloys indicates that microstructure has ikmportant effect on the tensile fracture mechanism of the alloys.The cracks initiate within primary O/α2 grains along O/B2 boundaries or O phase laths in B2 matrix,and propagate along primary B2 grain boundaries for the duplex microstructure.The fracture mode is transgranular with ductile dimples for the duplex and the equiaxed microstructures,but intergranular for the lath microstructure.  相似文献   

6.
采用光学显微镜、透射电镜和拉伸试验等手段,研究了多道次两向轧制和单向轧制对不同原始状态(热轧态、水淬态和空冷态)Ti-6Al-4V合金显微组织和力学性能的影响。结果表明,热轧态Ti-6Al-4V合金的组织为片状α相+β相+少量等轴α相,水淬态Ti-6Al-4V合金形成了针状马氏体组织,空冷态Ti-6Al-4V合金形成了网状组织。Ti-6Al-4V合金适宜的两向轧制温度为700 ℃,此时合金中可见颗粒状β相弥散分布在α基体上。两向轧制Ti-6Al-4V合金的抗拉强度和屈服强度从高至低顺序为:水淬态>热轧态>空冷态,且轧向强度要高于横向;相较于单向轧制,两向轧制明显降低了Ti-6Al-4V合金板材拉伸性能的各向异性,且水淬态Ti-6Al-4V合金的轧向和横向强度差异最小,700 ℃轧制Ti-6Al-4V合金的主要细化机制为位错细化。  相似文献   

7.
Microstructure control and high temperature properties of TiAl base alloys   总被引:1,自引:0,他引:1  
An equiaxed fine grain structure, a γ grain structure with the precipitated 2 laths, and a fully lamellar structure were obtained by the microstructure control using thermomechanical processing and heat treatment. The key to obtaining the equiaxed fine grain structure using isothermal forging is to decompose the lamellar structure and then produce the fine grain microstructure through dynamic recrystallization. TiAl base alloys consisting of fine equiaxed grains, in particular, Ti-39Al-9V consisting of the γ and B2 phases exhibited superplastic elongation of more than 600% at 1423 K. Creep rupture properties of TiAl binary alloys with various microstructures were studied in purified He in the temperature range from 1073 to 1373 K. Above 1173 K the precipitated 2 phase improved the steady state creep rate and creep life. At 1023 K, the 2 phase did not improve the creep rate, although the steady state creep rate decreased and the creep life increased as the γ grain size increased.  相似文献   

8.
1 Introduction Adiabatic shear localization is one of the most important deformation and failure mechanisms in some titanium alloys subjected to moderate and high shear strain rates. Adiabatic shear band(ASB) can be observed in various applications, such as metal forming, perforation, impact on structures, ballistic impact, machining, torsion, explosive fragmentation, grinding, interfacial friction, powder compaction and granular flow[1?15]. The formation of ASBs is often followed by ductile…  相似文献   

9.
The effects of oxygen on the mechanical properties and the lattice strain of commercial pure CP) Ti and Ti-6Al-4V alloys are discussed here in terms of the Vickers hardness, tensile strength and elongation. The Vickers hardness and tensile strength of the CP Ti and the Ti-6Al-4V alloys increased with an increase in the oxygen concentration. On the other hand, the elongation of the CP Ti decreased considerably as the oxygen concentration increased, while that of the Ti-6Al-4V alloys gradually decreased as the oxygen concentration increased. Thus, the oxygen concentration has a greater effect on the mechanical properties of CP Ti compared to its effects on the Ti-6Al-4V alloy. This can be explained in terms of the difference in the solid solution effect of oxygen between the CP Ti and the Ti-6Al-4V alloy. Where, the mechanical properties of Ti-6Al-4V alloy were previously affected by an earlier lattice expansion caused by an increment in the c/a ratio of the Ti-6Al-4V during the Al and V alloying process.  相似文献   

10.
A new method to modify the solidification microstructure of titanium alloys, named melt hydrogenation, by adding TiH2 as additive into the melt of titanium alloys during induction skull melting process (ISM), is put forward and the refining effect of this method on the solidification microstructure of Ti-6Al-4V alloy was studied experimentally. After melt hydrogenation, the grain sizes of as-cast Ti-6Al-4V alloy decreased to 612 μm from 1,072 μm, lath-shaped α phase was also refined and fine α/β lamellar microstructure was formed when 1.0 wt.% TiH2 was added. δ-hydride was found in the X-ray diffraction (XRD) spectra of Ti-6Al-4V alloy that prepared with 1.0 wt.% TiH2 added and the δ-hydride distributes in α phase as acicular precipitations.  相似文献   

11.
1.IntroductionContinuousfiberreinforcedtitaniummatrixcompositeshavepotentialapplicationatelevatedtemperature.Anewmethodhajsbeentriedbyoneofthepresentautho.s[1'21toalleviatethedeleteriousinterfacereactionbetweenthefiberandthematrix,whichislikelytooccurinthiscompositeduringfabrication.Previous.orb[llshowedthattitaniummatrixcompositecanachievefullconsolidationatrelativelylowtemperaturewiththeaidofhydrogenasatemporaryalloyingelement.Furtherstudyalongthisdirectionshouldbebasedonacomprehensiveunders…  相似文献   

12.
采用累计流量法对供应态Ti-6Al-4V合金进行了固态置氢,运用OM、XRD、TEM分析等方法研究了Ti-6Al-4V合金固态置氢后的微观组织状态及演变过程。结果表明:供应态Ti-6Al-4V合金的置氢量低于0.30%(质量分数,下同)时,置氢使得Ti-6Al-4V合金中的α相减少、β相增加;置氢量达到0.30%时,置氢Ti-6Al-4V合金中有δ氢化物(TiH2相)形成;β-Ti(H)共析转变生成α-Ti和δ氢化物时主要以切变方式进行;置氢Ti-6Al-4V合金的相变温度最多下降了180°C,与Ti-6Al-4V合金在置氢过程中的相体积比变化和共析转变有密切关系。  相似文献   

13.
The microstructure, interface thickness, element distribution and interfacial mechanical behavior of Ti-6Al-4V/Al couples prepared by an insert moulding method were investigated in depth in this paper. Moreover, Ti/Al bonding was also given as a comparison for understanding the interface bonding mechanism. It is shown that there is much thinner compact sub-layer for the interface of the Ti-6Al-4V/Al joint, whose morphology is obviously different from that of the Ti/Al joint. The Ti-6Al-4V/Al interface has been proven to contain a slight content of vanadium. Moreover, both the shear strength and the interface reaction rate of Ti-6Al-4V/Al compound materials are lower than those of the Ti/Al ones.  相似文献   

14.
To investigate the mechanical properties of the Ti-6Al-4V alloy fabricated by laser solid forming technology, both static and dynamic shear tests were conducted on hat-shaped specimens by a servohydraulic testing machine and an enhanced split Hopkinson pressure bar system, over a temperature range of 173-573 K. The microstructure of both the original and deformed specimens was characterized by optical microscopy and scanning electron microscopy. The results show that: (1) the anisotropy of shear properties is not significant regardless of the visible stratification and the prior-β grains that grow epitaxially along the depositing direction; (2) the ultimate shear strength of this material is lower than that of those Ti-6Al-4V alloys fabricated by forging and extrusion; (3) the adiabatic shear bands of approximately 25.6-36.4 μm in width can develop at all selected temperatures during the dynamic shear deformation; and (4) the observed microstructure and measured microhardness indicate that the grains become refined in adiabatic shear band. Estimation of the temperature rise shows that the temperature in shear band exceeds the recrystallization temperature. The process of rotational dynamic recrystallization is considered to be the cause of the grain refinement in shear band.  相似文献   

15.
使用直接能量沉积技术,以纯Ti、纯V和纯Cr粉末为原料制备一系列Ti-XV-15Cr(X=20,25,30,35)合金。研究了V含量对Ti-XV-15Cr合金的晶粒形貌、显微硬度、弹性模量及阻燃性能的影响。结果表明,Ti-20V-15Cr、Ti-25V-15Cr和Ti-30V-15Cr合金的显微组织由外延生长的柱状晶和顶部细小的等轴晶组成,随着V含量的增加,柱状晶粒的长/宽比逐渐减小。而Ti-35V-15Cr合金的显微组织与Ti-20V-15Cr,Ti-25V-15Cr和Ti-30V-15Cr有很大的不同,除了顶部是细小的等轴晶,几乎全由近等轴晶组成。结合柱状晶向等轴晶转变(CET)模型以及柱状晶层的高度与Z轴抬升量(ΔZ)之间的关系,解释了微观组织的形成机理。Ti-XV-15Cr合金的平均显微硬度随V含量的增加而略有增加,其弹性模量在123.8与137.6 GPa之间。阻燃测试表明,Ti-35V-15Cr合金具有最佳的阻燃性能。  相似文献   

16.
Ti-6Al-4V合金的超高周疲劳行为   总被引:3,自引:0,他引:3  
采用超声疲劳实验分别确定了双态和网篮两种组织的Ti-6Al-4V合金的疲劳寿命(S-N)曲线,并用SEM观察疲劳断口.结果表明,两种组织合金的S-N曲线均保持下降趋势,在105-109cyc间不出现水平段,不存在传统意义的疲劳极限,断口形貌分析表明,随着应力幅的降低,二者的裂纹萌生位置都发生了由试样表面到内部的转变.与加载频率为25 Hz时的疲劳实验结果进行比较后发现,超声疲劳加载条件下,疲劳强度提高,疲劳寿命延长,且频率对网篮组织合金疲劳性能的影响大于对双态组织的影响.  相似文献   

17.
Fe83Ga17Tby合金组织结构及磁致伸缩性能   总被引:1,自引:0,他引:1  
采用Φ7.62 mm装甲钢平头子弹对Ti-6Al-4V合金进行侵彻,分析了Ti-6Al-4V合金弹着点及其弹着点周围宏观与微观组织变化与损伤.结果表明,Ti-6Al-4V合金弹着点微观组织变化与损伤与侵彻不同阶段所受应力、应变、应变硬化、热软化和弹头形状等因素密切相关.在高应变率下,Ti-6Al-4V合金绝热剪切带的形成是一个由萌生、扩展、完全发展组成的过程.Ti-6Al-4V合金弹着点在不同发展阶段的组织变化与损伤不同,各个阶段靶板受力状态在其微观组织变化与损伤中起到非常重要的作用.  相似文献   

18.
Coarse columnar β grains result in anisotropic mechanical properties in Ti alloys deposited by additive manufacturing. This study reports that Ti-6Al-4V alloy fabricated by coaxial electron beam wire feeding additive manufacturing presents a weak anisotropy, high strength and ductility. The superior tensile property arises from a microstructure with fine equiaxed β grains (EGβ), discontinuous grain boundary α phase and short intragranular α lamellae. A large region of fine EGβ arises from a special combination of the temperature gradient and solidification rate, and attractive α morphology is caused by solid phase transformations during interpass thermal cycling and post heat treatments.  相似文献   

19.
以Ti、Al、V混合元素粉末为原料激光沉积Ti-6Al-4V,并对沉积态试样的组织演化及力学性能进行研究.结果表明,与采用预合金Ti-6Al-4V粉末为原料所获得的沉积试样的凝固组织特征有所不同,采用混合元素粉末为原料获得的沉积试样的凝固组织随激光功率的提高逐渐由等轴晶转化为柱状晶,熔池内合金化过程所产生的混合热的扰动作用是导致低功率条件下等轴晶形成的原因.原始β晶粒内的微观组织由大量的魏氏α板条和一定体积分数的板条间β相组成.这与采用预合金粉末基本相同.混合元素法激光立体成形Ti-6Al-4V的氧含量仅约0.1wt.%,沉积态Ti-6Al-4V的室温拉伸性能超过锻件标准要求.  相似文献   

20.
Ti-45Al-9(V, Nb, Y) alloys with four different x=V/Nb (atomic ratio x = 1, 1.5, 2 and 3.5) have been prepared, and the microstructures, properties and hot deformation behaviors were investigated. SEM, XRD and TEM results showed that Ti-45Al-9(V, Nb, Y) alloys were mainly composed of γ, α 2 , and β phase, and the volume fraction of β phase increased with the increase of the atomic ratio of V/Nb. The alloys were featured with lamellar microstructure with β and γ phases locating at the colony boundaries, and some β precipitates appearing at γ/γ interfaces. It was found that the colony size decreased with the increase of x. The alloys exhibited moderate mechanical properties at room temperature, with a yield strength of over 600 MPa, and fractures showed mainly translamellar character. The alloy with x=3.5 exhibited the best deformability at elevated temperature and that with x=1 had superior oxidation resistance at 800 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号