首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
超宽带(Ultra Wide-Band,UWB)系统发射信号的带宽在一个非常大的频段范围内,易与已存在的窄带无线通信系统的带宽形成重叠。因此,有必要研究UWB系统在频段重合范围内的抗干扰能力。文中首先分析了直接扩频超宽带系统在最小均方误差准则检测方式下,RAKE接收机的比特误码率(Bit Error Rate,BERl,然后研究了普通窄带系统的功率谱密度,最后做出了仿真分析。结果表明,在CM1信道传播下,窄带干扰对UWB系统不会造成很大影响,而在CM2信道传播下会照成一定影响,必须通过其他通信手段如信道编码来降低BER,实现通信的可靠性。  相似文献   

3.
This paper proposes an over-sampling multi-channel equalizer per sub-band for multi-band ultra-wideband (UWB) system and compares its performance with conventional RAKE receiver when operating in practical UWB channel models. Three transmission modes have been considered, and inter-symbol interference (ISI) is found to be inherent to certain transmission modes due to the large UWB channel delay spreads. Through detailed analytical and simulation studies, the proposed over-sampled minimum mean square error (MMSE) equalizer is shown to be able to handle ISI under any channel conditions or transmission modes, with an acceptable BER. In addition, the rich multipath diversity of the UWB channels is harnessed by the over-sampling scheme, for output SNR improvement. Over-sampling is done in the expense of an increase in system complexity  相似文献   

4.
DS-UWB时域均衡接收技术研究   总被引:3,自引:0,他引:3  
本文根据UWB信道的特性和DS-UWB发送信号的特点,提出了一种在RAKE接收前的时域均衡技术,并通过蒙特卡罗仿真得出的误码率比较结果,该时域均衡技术使RAKE接收机接收性能有很大的提高.  相似文献   

5.
This paper investigates three decision- feedback receivers for Direct-Sequence Ultra-Wideband Radio (DS-UWB) based on two-channel BPSK modulation with ternary spreading code. A compact and insightful vector-matrix signal model is built up for receiver design under UWB channel dispersion over many consecutive symbols. First, we consider the design of a RAKE with Decision Feedback (RAKE-DF) receiver. Using the Gaussian approximation technique, we derive its analytic performance under no error propagation. It is shown that the RAKE-DF receiver suffers from a significant error floor due to the uncancelled pre-cursor ISI (or pre-ISI abbreviated). Next, we design the MMSE-DF receiver to achieve a better performance by suppressing the pre-ISI, too. However, the MMSE receiver requires costly matrix inversion. Then a new receiver is investigated as the third one, which is called the RAKE with Bi-Directional Decision Feedback (RAKE-BDDF) receiver, for efficiently canceling both the post-(cursor) ISI and pre-ISI at symbol rate. It cannot only attain the matched filter bound approximately, but also maintain a similar complexity as that of the RAKE-DF receiver. Simulation and semi-analytic BER curves are included for performance comparison of the three receivers in the presence of the CM2 and CM4 UWB channels.  相似文献   

6.
In this paper, we first derive the theoretical performance of a complementary code keying (CCK) code on an additive white Gaussian noise (AWGN) channel and over a multipath channel. To derive the error performance, we use the weight and cross-correlation distributions of the CCK code for optimal and suboptimal decoding, respectively, based on union bound. In addition, we propose a RAKE receiver for a CCK modem, which is suitable for a multipath environment with a large delay spread. The RAKE receiver principle is acceptable for modest multipath because it can coherently combine multipath components to provide signal-to-noise ratio (SNR) enhancement. However, as the delay spread is larger and the data rate of systems goes higher, intersymbol interference (ISI) generated due to multipath environments are increased. To handle the increasing ISI, the CCK modem needs an equalization technique to remove the ISI, together with RAKE processing. Thus, our proposed system is based on a channel matched filter (CMF) with a decision feedback equalizer (DFE). The CMF is applied for RAKE processing, whereas the DFE structure is used for ISI cancellation. In our system, ISI is calculated and removed by using a decoded CCK codeword.  相似文献   

7.
IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals will interfere with UWB systems significantly. In this letter, a novel narrow-band interference (NBI) suppression technique based on the singular value decomposition (SVD) algorithm is proposed in direct sequence ultra-wideband (DS-UWB) systems in wireless multipath channels. SVD is used to approximate the interference which then is subtracted from the received signals. In contrast to the conventional suppression methods such as the notch filter and the maximal-ratio combining partial RAKE (MRC PRAKE) receiver, our proposed technique is simple and robust, the hardware complexity of the receiver can be reduced greatly.  相似文献   

8.
Traditional equalizers are very sensitive to carrier frequency offsets between the transmitter and receiver. Coherent receivers with frequency estimation algorithms can remove the offset to prevent the equalizer breakdown, but with a penalty in receiver complexity. On the other hand, noncoherent receivers such as differential detectors are inherently robust to the frequency offsets but cannot employ standard equalization techniques due to their nonlinear front-end. We introduce a simple noncoherent equalizer receiver structure for fading channel environments with short memory (up to two-bit intervals). The receiver consists of a whitened matched filter followed by a differential detector and a maximum likelihood sequence estimation (MLSE) equalizer. We examine the performance of this noncoherent equalizer by both analysis and simulation. It is shown that despite the simplicity, this receiver structure is capable of significant performance improvement as compared to an ordinary differential detector while operating with receiver frequency offsets two orders of magnitude greater than a traditional MLSE equalizer. This structure offers an attractive solution for high-bit-rate cordless transmission systems such as Digital Enhanced Cordless Telecommunications (DECT) that use simple noncoherent receivers whose performance can be constrained by channel dispersion. Using DECT as a case study, we show that the equalizer's performance limits are caused by the receiver nonlinearity and can be improved by adaptation of this nonlinearity to channel conditions.  相似文献   

9.
We derive and compare several linear equalizers for the CDMA downlink under frequency selective multipath conditions: minimum mean-square error (MMSE), zero-forcing (ZF), and RAKE. MMSE and ZF equalizers are designed based on perfect knowledge of the channel. The downlink specific structure involves first inverting the multipath channel to restore the synchronous multi-user signal transmitted from the base-station at the chip-rate, and then correlating with the product of the desired user's channel code times the base-station specific scrambling code once per symbol to decode the symbols. ZF equalization restores orthogonality of the Walsh-Hadamard channel codes on the downlink but often suffers from noise gain because certain channel conditions (no common zeros) are not met; MMSE restores orthogonality only approximately but avoids excessive noise gain. We compare MMSE and ZF to the traditional matched filter (also known as the RAKE receiver). Our formulation generalizes for the multi-channel case as might be derived from multiple antennas and/or over-sampling with respect to the chip-rate. The optimal symbol-level MMSE equalizer is derived and slightly out-performs the chip-level but at greater computational cost. An MMSE soft hand-off receiver is derived and simulated. Average BER for a class of multi-path channels is presented under varying operating conditions of single-cell and edge-of-cell, coded and un-coded BPSK data symbols, and uncoded 16-QAM. These simulations indicate large performance gains compared to the RAKE receiver, especially when the cell is fully loaded with users. Bit error rate (BER) performance for the chip-level equalizers is well predicted by approximate SINR expressions and a Gaussian interference assumption.  相似文献   

10.
In recent years single carrier modulation (SCM) has again become an interesting and complementary alternative to multicarrier modulations such as orthogonal frequency division multiplexing (OFDM). This has been largely due to the use of nonlinear equalizer structures implemented in part in the frequency domain by means of fast Fourier transforms, bringing the complexity close to that of OFDM. Here a nonlinear equalizer is formed with a linear filter to remove part of intersymbol interference, followed by a canceler of remaining interference by using previous detected data. Moreover, the capacity of SCM is similar to that of OFDM in highly dispersive channels only if a nonlinear equalizer is adopted at the receiver. Indeed, the study of efficient nonlinear frequency domain equalization techniques has further pushed the adoption of SCM in various standards. This tutorial paper aims at providing an overview of nonlinear equalization methods as a key ingredient in receivers of SCM for wideband transmission. We review both hybrid (with filters implemented both in time and frequency domain) and all-frequency-domain iterative structures. Application of nonlinear frequency domain equalizers to a multiple input multiple output scenario is also investigated, with a comparison of two architectures for interference reduction. We also present methods for channel estimation and alternatives for pilot insertion. The impact on SCM transmission of impairments such as phase noise, frequency offset and saturation due to high power amplifiers is also assessed. The comparison among the considered frequency domain equalization techniques is based both on complexity and performance, in terms of bit error rate or throughput.  相似文献   

11.
宋玙薇  杨守义  齐林 《电视技术》2012,36(5):83-85,94
针对功率放大器的非线性问题和多径信道引起的时间色散,提出了一种接收端联合补偿方案。由基于维纳模型的均衡器实现,该均衡器由一个线性滤波器级联一个多项式滤波器组成,所有运算均在接收端完成。仿真结果显示,经过非线性均衡的误码率性能比无非线性均衡时有很大改善,在同一误码率下,信噪比至少降低了3.5 dB。  相似文献   

12.
Symbol spaced blind channel estimation methods are presented which can essentially use the results of any existing blind equalization method to provide a blind channel estimate of the channel. Blind equalizer's task is reduced to only phase equalization (or identification) as the channel autocorrelation is used to obtain the amplitude response of the channel. Hence, when coupled with simple algorithms such as the constant modulus algorithm (CMA) these methods at baud rate processing provide alternatives to blind channel estimation algorithms that use explicit higher order statistics (HOS) or second-order statistics (subspace) based fractionally-spaced/multichannel algorithms. The proposed methods use finite impulse response (FIR) filter linear receiver equalizer or matched filter receiver based infinite impulse response+FIR linear cascade equalizer configurations to obtain blind channel estimates. It is shown that the utilization of channel autocorrelation information together with blind phase identification of the CMA is very effective to obtain blind channel estimation. The idea of combining estimated channel autocorrelation with blind phase estimation can further be extended to improve the HOS based blind channel estimators in a way that the quality of estimates are improved.  相似文献   

13.
Single‐carrier frequency division multiple access (SC‐FDMA) systems with space frequency block coding (SFBC) transmissions achieve both spatial and frequency diversity gains in wireless communications. However, SFBC SC‐FDMA schemes using linear detectors suffer from severe performance deterioration because of noise enhancement propagation and additive noise presence in the detected output. Both issues are similar to inter‐symbol‐interference (ISI). Traditionally, SC‐FDMA system decision feedback equalizer (DFE) is often used to eliminate ISI caused by multipath propagation. This article proposes frequency domain turbo equalization based on nonlinear multiuser detection for uplink SFBC SC‐FDMA transmission systems. The presented iterative receiver performs equalization with soft decisions feedback for ISI mitigation. Its coefficients are derived using minimum mean squared error criteria. The receiver configuration study is Alamouti's SFBC with two transmit and two receive antennas. New receiver approach is compared with the recently proposed suboptimal linear detector for SFBC SC‐FDMA systems. Simulation results confirm that the performance of the proposed iterative detection outperforms conventional detection techniques. After a few iterations, bit‐error‐rate performance of the proposed receiver design is closely to the matched filter bound. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a novel multitap interpolation equalization technique for filter bank-based multicarrier modulation/demodulation systems. The proposed technique is based on the equalization of the channel fractional delay in each subchannel in time synchronization with the constituent receiver side decimator. The proposed synchronization is achieved by combining a subset of the polyphase components of the analysis filter output signal after having passed through a bank of interpolation equalizers. The resulting multitap interpolation equalization permits a trade-off between various equalization parameters, such as the number of used polyphase components, the length of the equalizer, and the interchannel interference terms, making it possible to achieve a high signal-to-noise ratio (SNR) involving moderate equalization cost or a moderate SNR involving very low equalization cost. Simulation results for the standard carrier serving area loop show that the proposed equalization technique gives rise to 15 dB improvement in SNR compared to the output combiner equalization technique and can achieve an SNR close to the matched-filter bound for the channel by employing a reasonable equalizer length. Compared to the output combiner equalization technique, the proposed equalization technique involves around three times less the storage requirement at the same computational cost or around three times less the computational cost at the same storage requirement for equalizer training. Two suboptimal solutions are also proposed to simplify the equalizer training at only a minor loss in SNR.  相似文献   

15.
This paper proposes a new RAKE receiver incorporated with a bidirectional iterative intersymbol interference (ISI) canceller in order to reinforce multipath robustness of high-rate direct-sequence spread-spectrum complementary code keying (DSSS/CCK) systems. The proposed RAKE receiver first combines multipath signal components through a channel matched filter (CMF) and removes postcursor-ISI by employing a codeword decision feedback equalizer (DFE). Then, a CCK codeword detector tentatively determines the current CCK codeword symbol and reuses it to subtract precursor-ISI from the previous symbol. Therefore, the ultimate symbol decision is made using the delayed signal with both postcursor-ISI and precursor-ISI cancelled. The detection performance can be more improved through an iterative refinement processing between the postcursor and the precursor components. Simulation results exhibit a significantly improved error rate performance of the proposed receiver compared with that of the legacy RAKE receiver employing only a postcursor DFE. The additional cost for realization of the proposed receiver is one symbol decision delay and reuse complexity of the DFE and the codeword detector.  相似文献   

16.
In this paper a multicarrier CDMA (MC-CDMA) system with a soft decision differential phase shift keying (DPSK) frequency domain RAKE receiver is described. We compare a MC-CDMA system with a direct sequence CDMA system using RAKE receivers. In contrast with previous MC-CDMA systems, guard intervals are not used and the carriers are spaced at the reciprocal of the bit rate, optimising the usage of the bandwidth. In this way a comparison can be made between the multicarrier CDMA system described and a direct sequence (DS-CDMA) system with the same bandwidth. The results presented are received bit error rates from Monte Carlo simulations. The simulations are conducted in a multipath channel with Rayleigh fading and 300 Hz Doppler spectrum with additive white Gaussian noise. It is shown that the multicarrier CDMA matched filter receiver performs favourably compared to the direct sequence CDMA matched filter receiver for 1 -path fading. For a single user at a receive bit error rate of 1×10–3 in the 4-path fading channel the multicarrier RAKE receiver requires no knowledge of the channel delay spread and performs 3 dB worse than the DS-CDMA RAKE receiver simulated. The performance of the MC-CDMA RAKE receiver for a single user increases with increasing channel dispersion. The performance of the DS-CDMA RAKE receiver for multiple user is superior to that of the MC-CDMA RAKE receiver.  相似文献   

17.
A joint rake and minimum bit-error rate (MBER) equalizer receiver for direct-sequence ultra-wideband (DS-UWB) communication systems is proposed, where the receiver combats against inter-symbol interference (ISI) by utilizing the rake and equalization techniques. Theoretical analysis and simulation results of the proposed receiver performance are given. Monte Carlo simulations show that the performance of this receiver outperforms rake-MMSE-equalizer receiver and it will degrade with the increase of data speed and the decrease of rake fingers.  相似文献   

18.
水声信道均衡中基于信道估计的均衡方法理论上具有更优的均衡性能,但较高的计算复杂度限制了算法的实际应用。针对这一问题,该文首先基于Kalman滤波和Turbo均衡提出一种迭代Kalman均衡器,实现了基于软符号的迭代信道估计与迭代Kalman均衡,且复杂度较常规方法降低约1个数量级。其次,针对单一均衡算法和单一方向Turbo均衡器存在的误差传递现象,设计了基于迭代Kalman均衡器与改进成比例归一化LMS (IPNLMS)自适应均衡器相结合的混合双向Turbo均衡器,提高了自适应均衡器的收敛速度和均衡性能,并通过双向均衡结构带来的增益改善了符号估计误差传递的现象。理论分析与仿真实验验证了该文算法的有效性。  相似文献   

19.
In this paper,a frequency domain decision feedback equalizer is proposed for single carrier transmission with time-reversal space-time block coding (TR-STBC).It is shown that the diagonal decision feed...  相似文献   

20.
In the last few years, ultra-wideband (UWB) systems became an appealing technology for wireless communication applications. Unfortunately, when the transmission channel is affected by intersymbol interference (ISI), system performance of UWB systems equipped with receivers based on conventional matched filters presents error-floor phenomena. Aimed by these considerations, in this letter, we present a novel transmit-receive scheme allowing blind channel estimation and minimum mean-square error linear channel equalization. Essentially, the proposed scheme exploits a very short duration of the UWB pulse for achieving reliable blind deconvolution of the received signal. A nice feature of the resulting system is that blind deconvolution of the received signal is achieved without power and throughput losses. Simulation results support the effectiveness of the proposed scheme, and show that it is able to gain about 8 dB over current UWB receivers based on matched filtering on several test channels impaired by ISI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号