首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
In order to enhance the mechanical properties of konjac glucomannan film in the dry state and research the application of konjac glucomannan on food preservation domain, blend transparent film was prepared by blending 3 wt % sodium alginate aqueous solution with 4.5 wt % konjac glucomannan aqueous solution and dried at 40oC for 4 h. The structure and properties of the blend films were studied by infrared, wide angle X‐ray diffraction, scanning electron microscopy, and differential thermal analysis. Crystallinities of blend films were increased with the increase of sodium alginate. The tensile strength and breaking elongation of the blend films in dry state were obviously higher than those of both sodium alginate and konjac glucomannan films. Tensile strength of the dry blend film achieved 77.8 MPa when the retention of sodium alginate in the film was 27.9 wt %. The structure analysis indicated that there was a strong interaction between konjac glucomannan and sodium alginate, and this is resulted from the intermolecular hydrogen bonds. Moisture content and degree of water swelling of the blend films were increased due to the introduction of sodium alginate. Results from the film coating preservation experiment to litchi and honey peach showed that this blend film had water‐holding ability. The fruit weight loss rate and rot rate both decreased by various values. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 617–626, 2000  相似文献   

2.
Cellulose membranes and cellulose/casein blend membranes were successfully prepared from a new solvent system (6 wt % NaOH/4 wt % urea aqueous solution) by coagulation with a sulfuric acid aqueous solution. The structures and properties of the membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), wide-angle X-ray diffraction, differential scanning calorimetry, and a tensile test. The experimental results showed that the suitable coagulation condition was 5 wt % H2SO4 for 5 min. When the casein content of the mixture was less than 15 wt %, the blend membranes were miscible because of the interactions between the hydroxyl groups of cellulose and the peptide bonds of casein. The blend membranes with 10 wt % casein had good miscibility, higher crystallinity, and the highest mechanical properties and thermal stability. In this case, the tensile strength and breaking elongation of the blend membranes were 109 MPa and 16%, respectively, and its pore size, obtained by SEM, was 290 nm, which suggests that the blend membranes provide a potential application for the field of separation technology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3260–3267, 2001  相似文献   

3.
Blend films from carboxymethyl konjac glucomannan and sodium alginate in different ratios were prepared by blending 4 wt % sodium alginate aqueous solution with 2 wt % konjac glucomannan aqueous solution. After crosslinking with 5 wt % calcium chloride aqueous solution, the blend films formed a structure of semi‐interpenetrating networks. The structure and physical properties of both uncrosslinked and crosslinked films were characterized by Fourier transformed infrared spectra (FTIR), differential thermal analysis (DTA), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests. The results indicated that the mechanical properties and the thermal stability of the films were improved by blending sodium alginate with carboxymethyl konjac glucomannan due to the intermolecular hydrogen bonds between sodium alginate and carboxymethyl konjac glucomannan. The crosslinked blend films with Ca2+, compared with uncrosslinked blend films, exhibited further improved physical properties due to the formation of a semi‐IPN structure. Furthermore, the degree of swelling of the crosslinked films was also investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2554–2560, 2002  相似文献   

4.
A series of casting films blended from starch and waterborne polyurethane (STPU) in aqueous solution were prepared. The structure and properties of the films were investigated by infrared spectroscopy, ultraviolet spectroscopy, scanning electron micrography, strength test, thermogravimetric analysis, and different scanning calorimetry. The results showed that the tensile strength and modules of air‐dried STPU blend films increased with the increase of starch content, while elongation decreased. When starch content was in the range from 80 to 90 wt %, the blend films showed significantly higher tensile strength, breaking elongation, water resistivity, and light transmittance than that of pure starch film, resulting from the miscibility between starch and waterborne polyurethane. Moreover, the STPU films containing 90 wt % starch have higher thermal stability than pure waterborne polyurethane film, and their light transmittance was close to the polyurethane, due to the existence of a strong intermolecular hydrogen bonding between starch and polyurethane. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2006–2013, 2001  相似文献   

5.
Blend membranes of chitin/cellulose from 12 : 50 to 12 : 250 were successfully prepared from cotton linters in 1.5M NaOH/0.65M thirourea solution system. Two coagulation systems were used to compare with each other, one coagulating by 5 wt % H2SO4 (system H), and the other by 5 wt % CaCl2 and then 5 wt % H2SO4 (system C). The morphology, crystallinity, thermal stabilities, and mechanical properties of the blend membranes were investigated by electron scanning microscopy, atomic absorption spectrophotometer, infrared spectroscope, elemental analysis, X‐ray diffraction, different scanning calorimeter, and tensile tests. The cellulose/chitin blends exhibited a certain level of miscibility in the weight ratios tested. There were great differences between the two blends H coagulated with H2SO4 and C coagulated with CaCl2 and H2SO4, respectively. The membranes H have a denser structure, higher thermal stability, tensile strength (σb), and crystallinity (χc), and values of σb (90 MPa for chitin/cellulose 12 : 150) were significantly superior to that of both chitin and regenerated cellulose membrane. However, the blend membranes C have much better breaking elongations (?) than that of membranes H, and relatively large pore size (2re = 210 μm), owing to the removal of a water‐soluble calcium complex of chitin as pore former from the membranes C. When the percentage content of chitin in the blends was from 5 to 7.5%, the values of breaking elongation for the blend membranes H and C all were higher than that of unblend membranes, respectively. The blends provide a promising way for application of chitin as a functional film or fiber in wet and dry states without derivates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2025–2032, 2002  相似文献   

6.
We have successfully prepared a series of blend membranes from cellulose and soy protein isolate (SPI) in NaOH/thiourea aqueous solution by coagulating with 5 wt % H2SO4 aqueous solution. The structure and properties of the membranes were characterized by Fourier transform infrared spectroscopy, ultraviolet‐visible spectrometry, dynamic mechanical thermal analysis, scanning electron microscopy (SEM), transmission electron microscopy, and tensile testing. The effects of SPI content (WSPI) on the structure and properties of the blend membranes were investigated. The results revealed that SPI and cellulose are miscible in a good or a certain extent when the SPI content is less than 40 wt %. The pore structure and properties of the blend membranes were significantly improved by incorporation of SPI into cellulose. With an increase in WSPI from 10 to 50 wt %, the apparent size of the pore (2re) measured by SEM for the blend membranes increased from 115 nm to 2.43 μm, and the pore size (2rf) measured by the flow rate method increased from 43 to 59 nm. The tensile strength (σb) and thermal stability of the blend membranes with lower than 40 wt % of WSPI are higher than that of the pure cellulose membrane, owing to the strong interaction between SPI and cellulose. The values of tensile strength and elongation at break for the blend membranes with 10 wt % of WSPI reached 136 MPa and 12%, respectively. The blend membranes containing protein can be used in water because of keeping σ of 10 to 37 MPa. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 748–757, 2004  相似文献   

7.
All Blend films were prepared from a mixture of 2 wt % chitosan in acetate solution and 4 wt % quaternized poly(4‐vinyl‐N‐butyl) pyridine (QPVP) in aqueous solution and dried at room temperature for 72 h to obtain the films. Their structure and properties were studied by infrared (IR), wide‐angle X‐ray diffraction (WXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). Crystallinities of the blend films decreased with the increase of QPVP when weight of QPVP content was less than 15.0 wt %. The thermostability, tensile strength, and breaking elongation of the films in dry state were better than those of chitosan film. Tensile strength of the blend film dried at 40°C under vacuum for 24 h achieved 56.38 MPa when the weight ratio of chitosan to QPVP was 9 : 1. The structural analysis indicated that there was a strong interaction between chitosan and QPVP resulting from strong adhesion between both polymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 559–566, 2004  相似文献   

8.
Environmental friendly cellulose/chitin beads, having relatively high mechanical properties, were successfully prepared from a blend of cellulose and chitin in 6 wt % NaOH/5 wt % thiourea aqueous solution by coagulating with 5% H2SO4 aqueous solution. The ability of the beads to adsorb Pb2+ in an aqueous solution was measured with a fixed‐bed column. The effects of important parameters, to design an adsorption column of the cellulose/chitin beads for fixed‐bed columns, were investigated. The breakthrough curves for the adsorption behavior indicated that the column performance was improved with decreasing initial lead concentration, ionic strength, flow velocity or bead size, as well as increasing pH dependence and bed height. Column studies showed that constants, calculated from the experimental data, and the Bed Depth Service Time (BDST) model had a good correlation. The columns were easily regenerated by treating with 0.1 mol/L HCl aqueous solution after the adsorption of metals, providing a simple and economical method for removal and recovery of heavy metals. After four adsorption–desorption cycles, the efficiency of column for the removal of lead was not significantly reduced (not more than 5%). It is shown that heavy‐metal biosorption processes in fixed‐bed columns could give a broad range of potential industrial applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 684–691, 2004  相似文献   

9.
Blend films were prepared by blending 7 wt % konjac glucomannan (KGM) aqueous solution with 2 wt % chitosan (CH) in acetate solution and dried at 40°C for 4 h to obtain the transparent films. Their structure and properties were studied by infrared (IR), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Crystallinities of the blend films decreased with the increase of konjac glucomannan. The thermostability, tensile strength, and breaking elongation of the blend films in dry state were obviously higher than those of both konjac glucomannan and chitosan films. Tensile strength of the dry blend film achieved 73.0MPa when the weight ratio of chitosan to konjac glucomannan was 7:3. The structure analysis indicated that there is a strong interaction between konjac glucomannan and chitosan resulted from intermolecular hydrogen bonds. The water solubility of the blend films was improved by blending with konjac glucomannan, so they have promising applications to soluble antiseptic coating of pills. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 509–515, 2000  相似文献   

10.
胶原蛋白/海藻酸/羧甲基纤维素共混膜的结构与性能   总被引:3,自引:0,他引:3  
王碧  廖立敏  李建凤  熊恒英 《化学世界》2013,54(3):155-160,164
利用溶液共混法成功制备了新型生物膜材料—胶原蛋白/海藻酸/羧甲基纤维素共混膜(blend film),通过红外光谱、X-射线衍射、原子吸收光谱、扫描电镜对共混膜的结构进行了表征,同时测定了不同配比共混膜的透光率、拉伸强度(tensile strength)、断裂伸长率(breaking elonga-tion)、吸水率和水蒸汽透过率;对共混膜进行了热重和差示量热扫描分析。结果表明:共混膜中胶原蛋白、海藻酸钠和羧甲基纤维素之间具有较强的相互作用和良好的相容性,Ca2+交联、氢键以及静电引力等强烈相互作用使三元共混膜力学性能等得到了显著改善,其拉伸强度明显高于胶原蛋白膜、海藻酸膜和胶原蛋白/海藻酸二元共混膜、海藻酸钠/羧甲基纤维素二元共混膜,胶原蛋白质量分数为18.1%、海藻酸质量分数为45.5%和羧甲基纤维素为36.4%的三元共混膜中抗张强度最大,达102MPa。三元共混膜具有良好的力学性能,较好的热稳定性,作为一种新型生物材料可望在生物医学和食品材料领域得到应用。  相似文献   

11.
Silk fibroin/chitosan blend films were prepared by the solvent casting method. Miscibility between silk fibroin and chitosan was examined by dynamic mechanical thermal analysis. Structural changes of silk fibroin by the addition of chitosan were investigated by IR spectroscopy. The conformational transition of silk fibroin from random coil form to β‐sheet structure induced by blending with chitosan resulted in the increase of crystallinity and density of the blend films. The blend film containing 30 wt % chitosan exhibited a maximum increase in crystallinity and density. It was found that the tensile strength and initial tensile modulus of blend films were greatly enhanced with increasing the chitosan content and showed a maximum value at the composition of 30 wt % chitosan. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2571–2575, 1999  相似文献   

12.
Bacterial cellulose and alginate in an aqueous NaOH/urea solution were used as substrate materials for the fabrication of a novel blend membrane. The blend solution was cast onto a Teflon plate, coagulated in a 5 wt % CaCl2 aqueous solution, and then treated with a 1% HCl solution. Supercritical carbon dioxide drying was then applied for the formation of a nanoporous structure. The physical properties and morphology of the regenerated bacterial cellulose and blend membranes were characterized. The blend membrane with 80% bacterial cellulose/20 wt % alginate displayed a homogeneous structure and exhibited a better water adsorption capacity and water vapor transmission rate. However, the tensile strength and elongation at break of the film with a thickness of 0.09 mm slightly decreased to 3.38 MPa and 31.60%, respectively. The average pore size of the blend membrane was 10.60 Å with a 19.50 m2/g surface area. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
To improve the mechanical and water vapor barrier properties of soy protein films, the transparent films were prepared by blending 5 wt % soy protein isolate (SPI) alkaline water solution with 2 wt % carboxymethylated konjac glucomannan (CMKGM) aqueous solution and drying at 30 °C. The structure and properties of the blend films were studied by infrared spectroscopy, wide‐angle X‐ray diffraction spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, and measurements of mechanical properties and water vapor transmission. The results demonstrated a strong interaction and good miscibility between SPI and CMKGM due to intermolecular hydrogen bonding. The thermostability and mechanical and water vapor barrier properties of blend films were greatly enhanced due to the strong intermolecular hydrogen bonding between SPI and CMKGM. The tensile strength and breaking elongation of blend films increased with the increase of CMKGM content: the maximum values achieved were 54.6 MPa and 37%, respectively, when the CMKGM content was 70 wt %. The water vapor transmission of blend films decreased with the increase of CMKGM content: the lowest value achieved was 74.8 mg · cm?2 · d?1 when the CMKGM content was 70 wt %. The SPI–CMKGM blend films provide promising applications to fresh food packaging. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1095–1099, 2003  相似文献   

14.
The blend films of konjac glucomannan (KGM) and polyacrylamide (PAAm) were prepared by using the solvent‐casting technique. Transparent blend films were obtained in all blending ratios. The physical properties of the films were investigated by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy, and by measurement of mechanical properties. The results indicated the occurrence of intra‐ and intermolecular interactions of the pure components, as well as the intermolecular interactions between KGM and PAAm through hydrogen bond formation. The thermal stability and mechanical properties of both tensile strength and elongation at break of the films were improved by blending KGM with PAAm. It was worth noting that the blend film had the greatest tensile strength when the KGM content in the blend films was around 30 wt %. Surface morphology of the films observed by SEM was consistent with the above‐noted results. Furthermore, the water absorbability of the blend films was also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 882–888, 2001  相似文献   

15.
Novel polymer blends were prepared from a mixture of 2 wt % konjac glucomannan and 4 wt % quaternized poly(4‐vinyl‐N‐butyl) pyridine (QPVP) in aqueous solution and dried at room temperature for 72 h. Their structure and properties were studied by infrared, wide‐angle X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Thermal stability in the dry state was reduced with increasing content of QPVP. Compared with QPVP film, the tensile strength of the films was improved in the dry state. The maximum value of 12.74% tensile break elongation was reached when the content of QPVP was 30%. Structural analysis indicated that clear phase separation was observed when the content of QPVP was only 50%. Results from the filmcoating preservation experiments with lychee showed that this blend film had water‐holding ability. The fruit weight loss rate and rot rate both decreased in various degrees. The potential uses of these novel polymer films could be as preservative films. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1868–1875, 2004  相似文献   

16.
Composite films were successfully prepared from cellulose and two kinds of nanocrystalline TiO2 particles in a NaOH/urea aqueous solution (7.5 : 11 in wt %) by coagulation with H2SO4 solution. The structure, morphology, and properties of the films were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, TGA, tensile testing, UV–vis spectroscopy, and antibacterial test. The results indicated that TiO2 particles in a cellulose matrix maintained the original nanocrystalline structure and properties. TiO2(I) (anatase) and TiO2(II) (the mixture of anatase and rutile) particles exhibited a certain miscibility with cellulose. The tensile strength of two kinds of composite films was higher than 70 and 75 MPa, when the content of TiO2(I) and TiO2(II) was 4 and 11 wt %, respectively. The cellulose composite films containing nanocrystalline TiO2 particles displayed distinct antibacterial abilities and excellent UV absorption. This work provides a potential way for preparing functional composite materials from cellulose and inorganic nanoparticles in a NaOH/urea aqueous solution, without a destruction of the structure and properties of the particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3600–3608, 2006  相似文献   

17.
The focus of this article is the rheological properties of cellulose xanthate, chitin xanthate, and their blend solutions with cellulose/chitin blend weight ratios of 9.5 : 0.5, 9 : 1, 8 : 2, and 5 : 5 (mostly 9 : 1 blend solutions). The preparation and properties of fibers from 9 : 1 blend solutions and cellulose xanthate solutions are also discussed. The non‐Newtonian index of the investigated solutions was found to vary in the following order: chitin < cellulose < 9.5 : 0.5 blend < 9 : 1 blend < 8 : 2 blend < 5 : 5 blend. Showing a tendency contrary to that of the non‐Newtonian index, the structure viscosity index varies in the following order: chitin > cellulose > 9.5 : 0.5 blend > 9 : 1 blend > 8 : 2 blend > 5 : 5 blend. For 5–9 wt % 9 : 1 blend solutions, increasing the solution temperature aids the improvement of the fluidity of 9 : 1 blend solutions in the temperature range of 10–40°C. The zero shear viscosity decreases in an index manner with the solution temperature increasing. The 7–8 wt % 9 : 1 blend solutions have good filtering and rheological properties and are ideal for spinning fibers. The mechanical properties of blend fibers spun from 7% 9 : 1 blend solutions are lower than those of pure cellulose and are much higher than those of Crabyon fiber, and they still reach the national criteria and fit the need for further processing. This proves that the viscose method which we have developed here is an efficient way of preparing cellulose/chitin blend fibers with satisfactory mechanical properties and processing properties. Scanning electron microscopy photographs show that the surface of 9 : 1 blend fibers is coarser than that of pure cellulose fibers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Alginate and gelatin blend fibers were prepared by spinning their solution through a viscose‐type spinneret into a coagulating bath containing aqueous CaCl2 and ethanol. The structure and properties of the blend fibers were studied with the aid of infrared spectra, scanning electron micrography, X‐ray diffraction, and thermogravimetric analysis. Mechanical properties and water‐retention properties were measured. The best values of the tensile strength and breaking elongation of blend fibers were obtained when gelatin content was 30 wt %. The water‐retention values of blend fibers increase as the amount of gelatin is raised. The structural analysis indicated that there was strong interaction and good miscibility between alginate and gelatin molecules resulted from intermolecular hydrogen bonds. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1625–1629, 2005  相似文献   

19.
Biocompatible, biodegradable films composed of a hybrid blend of chitosan and egg phosphatidylcholine (ePC) were characterized in terms of composition, morphology, and performance‐related properties. The miscibility between chitosan and ePC for blends of 1 : 0.2 to 1 : 2.5 chitosan : ePC (wt/wt) was examined by differential scanning calorimetry and X‐ray diffraction analysis. The partial miscibility exhibited between chitosan and ePC provided an understanding of the microdomain morphology that was visualized by laser scanning confocal fluorescence microscopy of the films. The stability of the films in physiologically relevant media was assessed by percent weight loss over time. The mechanical properties of the chitosan–ePC films were determined by dynamic mechanical analysis and tensile tests. Interestingly, the dry film composed of a high lipid formulation (1 : 2.5 (wt/wt) chitosan: ePC) had the lowest tensile strength, contained lipid microdomains (10–30 μm in size), and provided the highest degree of stability. Following immersion in phosphate buffer solution, the Young's modulus of the film was found to decrease by more than two orders of magnitude and could be further manipulated by decreasing the lipid content within the film. In this way, relationships between the composition and the physical as well as mechanical properties of the chitosan–ePC blends were established. Furthermore, this study demonstrates the potential usefulness of partially miscible chitosan‐based blends for biomedical purposes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3453–3460, 2007  相似文献   

20.
A novel preservative film was prepared by blending konjac glucomannan (KGM) and poly (diallydimethylammonium chloride) (PDADMAC) in aqueous system. The effects of PDADMAC content on the miscibility, morphology, thermal stability, and mechanical properties of the blend films were investigated by density determination, scanning electron microscopy (SEM), attenuated total reflection infrared spectroscopy (ATR‐IR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile tests. The results of the density determination predicted that the blends of KGM and PDADMAC were miscible when the PDADMAC content was less than 70 wt %. Moreover, SEM and XRD confirmed the result. ATR‐IR showed that strong intermolecular hydrogen bonds interaction occurred between the negative charge groups of KGM and the quaternary ammonium groups of PDADMAC in the blends. The tensile strength and the break elongation of the blends were improved largely to 106.5 MPa and 32.04%, when the PDADMAC content was 20 wt %. The thermal stability of the blends was higher than pure KGM. Results from the film‐coating preservation experiments with lichi and grapes showed that the blend film had excellent water‐holding and preservative ability. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号