首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
The effects of thermally crosslinkable polymerization of monomer reactant–polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2906–2914, 2002; DOI 10.1002/app.10287  相似文献   

2.
The effect of polymerization of monomer reactant–polyimide (POI) as the interfacial agent on the interface characteristics, morphology features, and crystallization of poly(ether sulfone)/poly(phenylene sulfide) (PES/PPS) blends were investigated using a scanning electron microscope, FTIR, WAXD, and XPS surface analysis. It was found that the interfacial adhesion was enhanced, the particle size of the dispersed phase was reduced, and the miscibility between PES and PPS was improved by the addition of POI. It was also found that POI was an effective nucleation agent of the crystallization for PPS. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1297–1306, 2002  相似文献   

3.
The melting and crystallization behavior of blends of poly(phenylene sulfide) (PPS) with poly(ethylene terephthalate) (PET) has been investigated. The component polymers in the blend exhibited separate crystallization peaks and overlapping melting peaks. The nonisothermal DSC scans indicated that the crystallization parameters for PET become modified to a greater extent than do those for PPS in the blends. The PET crystallization peak became narrower with a higher heat of crystallization, suggesting a faster rate of crystallization as a result of blending with PPS. The isothermal crystallization studies revealed that the nucleation of PPS is facilitated by the presence of PET. This contention has been substantiated by polarized light microscopic observations. The spherulites of PPS were found to be smaller in the blends as compared to those in neat PPS. This enhancement in the nucleation of PPS has been attributed to the possibilities of chemical interactions between the component polymers. On the other hand, the increase in the rate of crystallization of PET has been attributed to the heterogeneous nucleation provided by the alreadycrystallized PPS. The melt crystallized blends exhibited slightly higher heats of fusion compared to the values computed from the rule of proportional additivity. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The morphology of nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with poly (ether ether ketone) (PEEK) have been observed by polarized optical microscope (POM) equipped with a hot stage. The nonisothermal crystallization behavior of PPS and PEEK/PPS blend has also been investigated by differential scanning calorimetry (DSC). The maximum crystallization temperature for PEEK/PPS blend is about 15°C higher than that of neat PPS, and the crystallization rate, characterized by half crystallization time, of the PEEK/PPS blend is also higher than that of the neat PPS. These results indicate that the PEEK acts as an effective nucleation agent and greatly accelerates the crystallization rate of PPS. The Ozawa model was used to analyze the nonisothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS are higher than that of its blend, which shows that the presence of PEEK changed the nucleation type of PPS from homogeneous nucleation to heterogeneous nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The morphology of isothermally crystallized poly(phenylene sulfide) (PPS) and a blend combining it with high-impact polystyrene (HIPS) were observed through a polarized optical microscope equipped with a CSS450 hot-stage. The crystalline superstructure of PPS is mainly spherulite, and it was found that the presence of HIPS has little influence on the morphology of PPS, but decreases the nucleation rate of PPS. The effect of HIPS on the non-isothermal crystallization of PPS was investigated by differential scanning calorimetry (DSC). The maximum and onset crystallization temperatures for the HIPS/PPS blend were about 10°C lower than those of neat PPS, which indicates that the crystallization of PPS was retarded by HIPS. The Ozawa model was used to analyze the non-isothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS were higher than those of its blend, which shows that the presence of HIPS changed both the nucleation rate and the crystallization rate of PPS.  相似文献   

6.
The thermal and crystallization behavior of blends of glass fiber reinforced polyphenylene sulfide (PPS) with polyethylene terephthalate (PET) has been reported. The blends showed two overlapping melting peaks and two separate crystallization peaks. The heat of crystallization of PPS was found to decrease continuously with increasing PET content, whereas the heat of crystallization of PET was found to increase with increasing PPS content. This indicates that the degree of crystallinity of PPS is reduced whereas that of PET is increased as a result of blending. It is interesting to note that the combined heats of fusion of the blends were marginally higher than those calculated by proportional additivity rule in spite of the drop in the heat of crystallization of PPS. The temperature onset of crystallization of PET in the blends shifted to higher temperature whereas there was no significant change in the crystallization temperature of PPS. The increase in the temperature of crystallization of PET indicates enhanced nucleation. The isothermal crystallization studies of the component polymers revealed that both the component polymers crystallized at a relatively faster rate in the blend. The crystallization rate of PPS was found to increase significantly with increasing PET content. A significant increase in the rate of crystallization of PET was also observed in the blends. The acceleration of crystallization rate of PET in the blends was more pronounced as compared to that of PPS. The acceleration in the PET crystallization rate was attributed to the presence of glass fibers and crystallized PPS.  相似文献   

7.
The isothermal crystallization kinetics, the morphology, and the melting behavior of melt‐processed composites of poly(phenylene sulfide) (PPS) with a thermotropic liquid crystalline copolyester, Vectra A950, (TLCP) were studied by differential scanning calorimetry (DSC) and optical microscopy. The crystallization behavior of PPS in PPS/TLCP composites is observed to be highly sensitive to Tc and immiscible TLCP content in the composites. The spherulite growth rate, the overall crystallization rate, and the activation energy of PPS in PPS/TLCP composites are markedly depressed by the presence of TLCP. The analysis of the Avrami kinetic parameters (n and k) indicates that blending of TLCP with PPS causes heterogeneous growth process and nucleation mechanisms. At low Tcs, the PPS crystallization rate is faster than that neat PPS with ≤30 wt% TLCP loading whereas at high Tcs it remains almost unchanged. The analysis of the melting behavior of these composites indicates that the stability of PPS crystals and their reorganization is influenced both by the Tcs and the composite compositions. The sizes and the number of spherulites change a great extent with composite composition with a drop of spherulite rapid growth rate, at constant Tc, with increasing content of TLCP in composites. The analysis based on the Lauritzen‐Hoffmann secondary nucleation theory, using present DSC data, indicates that present data predominantly follow a linear growth trend over a present range of Tcs and PPS crystallization in composites still occurs according to regime II kinetics, whereby multiple surface nuclei form on the substrate with multiple nucleation acts commencing before initially formed growth layer is completed. The fold surface free energy of PPS chains in composites is found higher than that of neat PPS, leading to an average higher work of chain folding and is ascribed to a general development of the PPS chain mobility in the composite melt. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
The crystallization kinetics of blends made of poly(p-phenylene sulfide) (PPS) with a liquid crystalline polymer (LCP) was studied. The blends were found to be immiscible by dynamic mechanical thermal analysis (DMTA). Results of non-isothermal and isothermal crystallization experiments made by differential scanning calorimetry (DSC) showed that both components had their crystallization temperatures increased; also the LCP melting temperature was found to increase in the blends. It was concluded that the addition of LCP to the PPS increased the PPS overall crystallization rate due to heterogeneous nucleation. The fold interfacial free energy, σe of the PPS in the blends was observed not to vary with composition. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The melting behavior of PPS (polyphenylene sulfide) and its blends with PSF (bisphenol A polysulfone) and PEK-C (polyetherketone with phthalidylidene groups) are investigated with DSC technique. It is found that, with a rise in melt temperature Tmelt and melt time tmelt, the intensities of the lower melting peaks of PPS increase while those of the upper ones decrease or disappear in some cases, which can be attributed to the obstructive effect of branching or crosslinking of PPS macromolecules on the crystallization of PPS at higher temperature. As the annealing crystallization temperature increases, both the peak temperatures and intensities of the lower melting peaks of PPS increase. PSF and PEK-C have no influence on the lower melting peaks of PPS but are unfavorable to the crystallization of the higher melting species. The double melting behavior of the PPS component in the blends is much more susceptible to the changes in Tmelt and tmelt than that of neat PPS. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
研究了聚苯硫醚(PPS)与全芳及半芳族热致性液晶(TLCP)共混物的结晶和熔融行为;通过差示扫描量热仪(DSC)和偏光显微镜(PLM)分析了PPS的结晶过程和晶体微观结构,并研究了材料力学性能。研究表明,加入少量全芳或半芳族TLCP,可显著提高PPS最大结晶温度和结晶速率,全芳族TLCP起异向成核作用,而半芳族TLCP促进晶体增长;加入质量分数为2%的全芳族TLCP,可同时提高PPS的拉伸和冲击强度。  相似文献   

11.
研究了PMR型聚酰亚胺(PI)增容聚芳醚酮(PEK-C)/聚苯硫醚(PPS)共混物的热学性能、力学性能及其形态结构,对PMR型PI在PEK-C/PPS共混物中所起的增容作用机理进行了初步的探讨,实验发现,热固性聚合物预聚物可用于增容热塑性聚合物共混体系,这种增容方法有其特殊性和新颖性,增容后的PEK-C/PPS共混物的力学性能得以改善。  相似文献   

12.
Blends of polyphenylene sulfide (PPS) with a commercial, wholly aromatic, liquid crystal copolyesteramide (Vectra-B950) have been prepared by meltblending. The crystallization behavior of neat and blended PPS has been studied by differential scanning calorimetry (DSC), under both non-isothermal and isothermal conditions. It has been found that blending PPS with Vectra-B leads to an increase of the temperature of non-isothermal crystallization and to a pronounced acceleration of the isothermal crystallization, without any reduction of the degree of crystallinity. All these effects have been found to occur independent of the Vectra-B concentration, within the investigated range (2 to 20%, w/w). The results have been interpreted in terms of an incrased nucleation density of the blends, probably due to heterogeneous substances, initially present in the Vectra-B bulk, which dissolve to saturation in the PPS phase, during melt-blending.  相似文献   

13.
The morphology and nonisothermal crystallization behavior of blends made of poly(phenylene sulfide) (PPS), with a amorphous polycarbonate (PC) were studied. The blend is found to be partially miscible by the dynamic mechanical thermal analysis (DMTA) and melt rheological measurements. The nonisothermal crystallization behavior of blend was studied by differential scanning calorimetry (DSC). The results show clearly that the crystallization temperatures of PPS component in the blend decrease with increasing of PC contents. The crystallization kinetics was then analyzed by Avrami, Jeziorny, and Ozawa methods. It can be concluded that the addition of PC decreases the PPS overall crystallization rate because of the higher viscosity of PC and/or partial miscibility of blend, despite of small heterogeneous nucleation effect by the PC phase and/or phase interface. The results of the activation energy obtained by Kissinger method further confirm that the amorphous PC in the partial miscible PPS/PC blend may act as a crystallization inhibitor of PPS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The nonisothermal crystallization and melting behavior of a poly(phenylene sulfide) (PPS) blend with polyamide 6 (PA6) were investigated by differential scanning calorimetry. The results indicate that the crystallization parameters for PPS become modified to a greater extent than those for PA6 in the blends. The PPS and PA6 crystallize at high temperature as a result of blending. The crystallization temperatures of PPS in its blends are always higher than that of pure PPS and are independent of the melting temperature and the residence time at that temperature. The PPS crystallization peak becomes narrower and the crystallization temperature shifts to a higher temperature, suggesting a faster rate of crystallization as a result of blending with PA6. This enhancement in the nucleation of PPS could be attributed to the possible presence of interfacial interactions between the component polymers to induce heterogeneous nucleation. On the other hand, the increase in the crystallization temperature of PA6 can be attributed to the heterogeneous nucleation provided by the already crystallized PPS. The heterogeneous nucleation induced by interfacial interactions depends on the temperature at which the polymers remain in the molten state and on the storage time at this temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3033–3039, 1999  相似文献   

15.
The miscibilities of poly(phenylene) sulfide/poly(phenylene sulfide sulfone) (PPS/PPSS) and poly(phenylene) sulfide/poly(phenylene sulfide ether) (PPS/PPSE) blends were invesigated in terms of shifts of glass transition temperatures Tg of pure PPS, PPSS, a dn PPSE. The crystallization kinetics of PPS/PPSS blends was also studied as a function of molar composition. The PPS/PPSS and PPS/PPSE blends are respectively partially and fully miscible. PPSE shows a plasticizing effect on PPS as does PPS on PPSS, which necessarily improves te processibility in the respective systems. We can control Tg and melting temperature Tm of PPS by varying amounts of PPSE in blends. The melt crystallization temperature Tmc of PPS/PPSE blends was higher than that of the PPSE homopolymer. Therefore, these blends require shorter cycle times in processing than pure PPSE. The overall rate of crystallization for PPS/PPSS blends follows the Avrami equation with an exponent ?2. The maximal rate of crystallization for PPS/PPSS blends occurs at a temperatre higher by 10°C than that for PPS, while the crystallization half time t1/2 is 4 times shorter. In the cold crystallization range, crystal growth rates increase and Avrami exponents decrease significantly as the temperature increases.  相似文献   

16.
The macroscopic and microscopic melt‐crystallization kinetics of poly(trimethylene terphthalate) (PTT)/polycarbonate (PC) blends have been measured by differential scanning calorimetry (DSC), and optical microscopy (OM). The results are analyzed in terms of the Avrami equation and the Hoffman–Lauritzen crystallization theory (HL model). Blending with PC did not change the crystallization mechanism of PTT, but reduced the crystallization rate compared with that of neat PTT at the same crystallization temperature. The crystallization rate decreased with increasing crystallization temperature. The spherulitic morphology of PTT was influenced apparently by the crystallization temperature and by the addition of PC. X‐ray diffraction shows no change in the unit cell dimension of PTT was observed after blending. Through the HL theory, the classical regime II→III transition was detected for the neat PTT and the blends. The nucleation parameter (Kg), the fold‐surface free energy (σe), and the work of chain folding (q) were calculated. Blending with PC decreased all the aforementioned parameters compared with those of neat PTT. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

17.
The effect of nucleating agents on the crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (Tc) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187°C. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2145–2152, 2002  相似文献   

18.
王英  姜涛  王宪忠  芦艾 《中国塑料》2015,29(3):51-56
通过熔融共混制备了聚苯硫醚/无苯基聚甲基乙烯基硅氧烷(PPS/NPMVS)共混物及聚苯硫醚/单苯基聚甲基乙烯基硅氧烷(PPS/SPMVS)共混物,并对该共混物体系的微观形貌及力学性能进行了分析表征。结果表明,弹性体在共混物中均匀分散,弹性体的加入对PPS基体起到明显的增韧效果;当弹性体的含量为3 %(质量分数,下同)时,2种共混材料的增韧性能最佳,PPS/NPMVS共混材料的断裂伸长率相对于PPS基体提高了3.9倍,PPS/SPMVS共混材料的断裂伸长率相对于PPS基体提高了2.4倍;当NPMVS含量为10 %时,PPS/NPMVS共混材料的冲击强度相对于PPS基体提高了1.8倍,当SPMVS含量为3 %时,PPS/SPMVS共混材料的冲击强度相对于PPS基体提高了1.4倍。  相似文献   

19.
Polyhedral oligomeric silsesquioxane (POSS) additives have been shown to increase melt‐flow and crystallization in thermoplastics. In this study, the effect of incorporation of trisilanolphenyl‐POSS molecules in polyphenylenesulfide (PPS) and polyetheretherketone (PEEK) on rheology, crystallization kinetics, and thermal and mechanical properties was evaluated. Parallel plate rheometry revealed a reduction in the viscosity of PPS and PEEK with the addition of POSS. The magnitude and concentration dependence of rheological modification were shown to depend on the polymer structure and POSS solubility. Isothermal crystallization kinetics were analyzed using the Avrami model and it was found that the addition of POSS accelerated the crystallization rate of PPS blends with no significant effect on PEEK blends. Interestingly, no statistical difference in degradation temperature, tensile modulus, or tensile strength of PPS or PEEK blends was observed. The findings indicate the potential for improvements in melt viscosity and crystallization of high temperature thermoplastics with tailored POSS/polymer interactions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44462.  相似文献   

20.
Blends of poly(phenylene sulfide) (PPS) and recycled poly(ether ether ketone) (r‐PEEK) were prepared using a twin‐screw extruder. The carbon nanotube (CNT) added to the blends not only improved the compatibility of the two polymers, but also affected the morphology of the immiscible PPS/r‐PEEK blends. R‐PEEK always forms the dispersed phase and PPS the continuous phase in such blends. In the composite, CNT particles were observed in the PPS phase, mostly distributes in the interface between PPS and PEEK. The results show that r‐PEEK improves the impact and tensile strength of PPS, but does not provide nucleation effect on PPS. However, CNT improved the flexural modulus of PPS/r‐PEEK blends and promoted the crystallization of r‐PEEK rather than that of PPS. The prepared PPS/r‐PEEK blends provided larger electrical conductivity than neat polymers. Adding 20 wt % CNT to blend resulted in composite with the minimum volume resistivity, a reduction of four orders of magnitude, compared with that of the neat blend. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42497.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号