首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conducting polymer hydrogels composed of polyacrylamide (PAAm) and polyaniline (PAn) have been successfully synthesized through the interfacial polymerization. Compared to the conventional preparation methods, the interfacial polymerization is much more economical and effective because the PAn formed at the water/organic-solvent interface assembles spontaneously and exclusively into the PAAm hydrogel. In contrast to conventional materials, the resulting PAAm/PAn composite hydrogel exhibits high qualities including homogeneous structure, enhanced mechanical toughness, high electrical conductivity and the ability to reversibly interconvert between the doped and dedoped states. As-described interfacial polymerization for the fabrication of conducting polymer hydrogels does not depend on specific kinds of organic solvents or acid dopants.  相似文献   

2.
Semi-IPN hydrogels (based on cross-linked polyacrylamide having poly(N-isopropylacrylamide) (PN1PAAm) inside) were synthesized and their properties, such as swelling ratio and compressive elastic moduli, were studied at several temperatures. Equilibrium swelling ratios of semi-IPN markedly decreased due to the presence of less hydrophilic PNIPAAm chains. The semi-IPN presented greater elastic modulus when compared to the cross-linked PAAm hydrogel. The effect was explained as being an additional contribution of the PNIPAAm chains, which collapsed around the PAAm networks, to the elastic modulus. It was pointed out that the PAAm networks support the collapsed chains. According to the results presented in this work, semi-IPN hydrogels present better mechanical properties than the PAAm hydrogel, mainly when the PNIPAAm chains are in a collapsed state.  相似文献   

3.
Copolymer hydrogels composed of poly(vinyl alcohol) (PVA) and carboxymethyl cellulose (CMC) was prepared by using electron beam irradiation as crosslinking agent. The copolymers were characterized by FTIR and the physical properties such as gelation. The thermal behavior and swelling properties of the prepared hydrogels were investigated as a function of PVA/CMC composition. The factors effecting adsorption capacity of acid, reactive and direct dyes onto PVA/CMC hydrogel, such as CMC content, pH value of the dye solution, initial concentration and adsorption temperature for dyes were investigated. Thermodynamic study indicated that the values the negative values of ΔH suggested that the adsorption process is exothermic. The value of ΔH (38.81 kJ/mol) suggested that the electrostatic interaction is the dominant mechanism for the adsorption of dyes on hydrogel.  相似文献   

4.
Semi-IPN hydrogel composites for dye adsorption studies were prepared via photopolymerization of poly(ethylene glycol) (PEG) macromer and acrylamide (AAm) monomer in the presence of chitosan (CS). Swelling properties and kinetics of the hydrogel composites were investigated in aqueous solution and Acid Red 18 (AR 18) solution. The adsorption studies showed that the adsorption capacity for AR 18 increased with the increase of initial dye concentration and chitosan content in the hydrogels, but decreased with the increase of pH and ionic strength of dye solutions. Absorption kinetics of AR 18 followed pseudo second-order kinetic model at pH 2.0. The adsorption capacities for Acid Orange 7 (AO 7), Methyl Orange (MO) and Basic Violet 14 (BV 14) were also examined at pH 2.0, and the equilibrium adsorption data of AR 18, AO 7 and MO well fitted the Langmuir isotherm. The hydrogel composites could be potentially used as absorbents for anionic dye removal in wastewater treatment process.  相似文献   

5.
以(NH42S2O8和NaHSO3为氧化-还原引发剂、N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,采用自由基水溶液聚合方法,分别合成了聚丙烯酸(PAAc)、聚丙烯酰胺(PAAm)和系列丙烯酸(AAc)质量分数(fAAc)不同的聚(丙烯酸-co-丙烯酰胺)(P(AAc-co-AAm))水凝胶。进而分别对其在碱性缓冲溶液和NaOH溶液中的pH敏感行为进行了探讨。结果表明,PAAc和P(AAc-co-AAm)凝胶在2种溶液中均具有优良的pH响应行为,且在NaOH溶液中的溶胀比大于缓冲溶液中;而PAAm凝胶仅在NaOH溶液中具有pH敏感性。2种溶液中,随f(AAc)的增加,P(AAc-co-AAm)凝胶的平衡溶胀比(ESR)增大;但在缓冲溶液中,当f(AAc)≥20%时,P(AAc-co-AAm)凝胶的溶胀行为与PAAc相似,而当f(AAc)<20%时,其溶胀则同时表现出PAAc和PAAm凝胶的溶胀特性。溶胀机理分析表明,凝胶的溶胀主要受聚合物网络内静电排斥作用和离子屏蔽效应控制。  相似文献   

6.
A two-step polymerization technique is introduced to synthesize polyacrylamide/polyacrylate interpenetrating network (PAM/PAC IPN) hydrogels. The swelling ratio of the IPN hydrogel increases with the increase of the PAC content in PAM/PAC, and is smaller than the traditional PAM or PAC superabsorbents. A non-Fickian mechanism is observed in the swelling process, and the swelling changes from non-Fickian mechanism to Fickian mechanism with the increase of polyacrylate dosage in the hydrogel. The IPN hydrogel has typical pH-sensitivity and on–off effect. The deswelling properties and methyl orange dye removal are carried out based on the chelation of the carboxylic/carboxylate groups on the hydrogels with multivalent cations in solution. The hydrogel is expected to be used in the removal of heavy metal ions and dyes.  相似文献   

7.
The influence of various drugs with different charges on the drug release behavior in porous ionic thermosensitive hydrogels was investigated. The present hydrogels were prepared from N-isopropylacrylamide (NIPAAm) and cationic monomer, trimethyl (acrylamido propyl) ammonium iodide (TMAAI), or anionic monomer, acrylic acid (AA), or zwitterionic monomer, N′,N′-dimethyl (acrylamido propyl) ammonium propane sulfonate (DMAAPS), or nonionic monomer, poly(ethylene glycol) methylether acrylate (PEGMEA), and pore-forming agent, poly(ethylene glycol) (PEG) with different molecular weights. Caffeine as a nonionic drug, crystal violet (CV) as a cationic drug solute, and phenol red as an anionic drug solute were chosen as model drugs to perform the drug release experiment. Results show that the release ratio of caffeine in the hydrogels is not affected by the ionicity of hydrogels. The CV strongly interacted with the anionic hydrogel; thus, the CV release ratio is very low. CV is only adsorbed on the skin layer of the cationic hydrogel due to charge repulsion and is released rapidly. The result of phenol red (anionic solute) release in the hydrogels is contrary to CV. In addition, the partition coefficients (Kd) and the drug delivery behavior of the present gels were also investigated.  相似文献   

8.
This work describes the synthesis of chitosan hydrogel/SiO(2) and chitin hydrogel/SiO(2) hybrid mesoporous materials obtained by the sol-gel method for their use as biosorbents. Their adsorption capabilities against four dyes (Remazol Black B, Erythrosine B, Neutral Red and Gentian Violet) were compared in order to evaluate chitin as a plausible replacement for chitosan considering its efficiency and lower cost. Both chitin and chitosan were used in the form of hydrogels. This allowed full compatibility with the ethanol release from tetraethoxysilane. The hybrid materials were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Nitrogen Adsorption Isotherms and (13)C solid-state Nuclear Magnetic Resonance. Adsorption experimental data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models along with the evaluation of adsorption energy and standard free energy (ΔG(0)). The adsorption was observed to be pH dependent. The main mechanism of dye adsorption was found to be a spontaneous charge associated interaction, except for EB adsorption on chitin/SiO(2) matrix, which showed to involve a lower energy physical adsorption interaction. Aside from highly charged dyes the chitin containing matrix has similar or higher adsorption capacity than the chitosan one.  相似文献   

9.
A polymer material system has been developed to propose an injectable, UV and insitu curable hydrogel with properties similar to the native nucleuspulposus of intervertebral disc. Neat hydrogels based on Tween® 20 trimethacrylates (T3) and N-vinyl-2-pyrrolidone (NVP) and composite hydrogels of same composition reinforced by nano-fibrillated cellulose were synthesized with different T3 concentrations and their curing kinetics was investigated by photorheology using UV light. The T3 concentration has an influence on the time of curing and final shear stiffness of the material. NFC does not alter the time of curing but increases the final mechanical performance of the hydrogels for a same chemical composition. Hydrogel samples, neat and composite, were then tested in unconfined compression at different hydration stages and in confined compression and their elastic modulus was determined. The amount of fluid present in the network is mostly responsible for the mechanical properties and NFC fibres proved to be an efficient reinforcement. The elastic modulus ranged from 0.02 to 8 MPa. Biocompatibility studies showed that cells are confluent at 90% and do not show any morphology change when in contact with the hydrogel. The present hydrogel can therefore be considered for NP replacement.  相似文献   

10.
PVA/P(AA-AM)复合水凝胶的制备及性能   总被引:2,自引:0,他引:2  
采用水溶液聚合方法合成了不同组成的丙烯酸-丙烯酰胺共聚物(P(AA-AM))。将聚乙烯醇(PVA)与所合成的P(AA-AM)共混,以戊二醛为交联剂,制备出了不同结构的PVA/P(AA-AM)复合水凝胶。采用扫描电镜观察了凝胶形貌,研究了复合水凝胶的结构与性能关系。结果表明,复合水凝胶溶胀性能与所用交联剂加量有关,复合水凝胶的溶胀度随着交联剂加量增加先增大后减小,在交联剂加量为0.5%时水凝胶溶胀度达到最大值。复合凝胶中的聚合物组成对溶胀度影响显著,随着P(AA-AM)含量提高,水凝胶的溶胀度逐渐增大。适当结构的复合水凝胶具有pH敏感性,敏感程度随着凝胶中P(AA-AM)含量的增加而增强。  相似文献   

11.
通过酸碱处理和机械研磨结合的方法制备纳米纤维素(CNFs),并利用冻融循环法分别制备了聚乙烯醇(PVA)和纳米纤维素/聚乙烯醇(CNFs/PVA)复合水凝胶,以及聚乙二醇(PEG)改性PVA和CNFs/PVA复合水凝胶。考察不同配方下复合水凝胶的微观形貌变化,并对复合水凝胶的溶胀性能、压缩强度及热稳定性能进行研究。结果表明,CNFs与PEG对PVA水凝胶的微观形貌均有改善作用,加入PEG后形成的PEG/PVA凝胶产生明显的三维网络结构。当PEG与CNFs同时加入到PVA凝胶后形成的CNFs-PEG/PVA凝胶具有均匀的互穿孔洞结构,此时复合水凝胶的孔隙率最高((67.5±4.3)%),溶胀度最好(980%),且压缩强度较PVA水凝胶也有所提升。PEG对复合凝胶的热稳定性无影响,而加入CNFs后,CNFs-PEG/PVA复合凝胶的初始热分解温度从235℃上升至300℃,显著提高了PVA凝胶的热稳定性。  相似文献   

12.
In this study, an investigation is carried out on the influence of varying clay contents (25–43%), pH values (2–11 buffer solutions), heat treatment, temperatures (25–60 °C) and ionic strengths (saline solution, 10?7–0.1 M) on the water absorbency of polyacrylamide (PAAm)/laponite nanocomposite (NC) hydrogels in the absence of polyelectrolyte. For the influence of pH value on swelling behaviors, a maximum swelling ratio occurs at pH 11. Heat treatment of the hydrogels significantly improved the swelling capacity and created an obvious pH sensitive area (pH 3–4). The swelling capacity of the hydrogels was enhanced by increasing the temperature of the absorbing media. The results of swelling at different ionic strengths also indicate that the ionic strength can considerably weaken the swelling abilities of the NC hydrogels.  相似文献   

13.
Polymer nanocomposite (NC) hydrogels, with 3D networks composed of delaminated inorganic nanoparticles and a polymer matrix, usually display super mechanical toughness. However, the few types of inorganic materials and relatively scarce research for NC hydrogel functions seriously limit their applications. For the first time layered rare‐earth hydroxide (LRH)/polyacrylamide NC hydrogels with highly tunable photoluminescence (PL) function are reported, prepared via a convenient and green in situ polymerization process. Interestingly, the NC hydrogels reveal exciting multicolored PL phenomenon (green, yellow, orange, reddish‐orange to bluish violet), long luminescence lifetime, and relatively high quantum efficiency. Furthermore, the fascinating PL function is highly tunable by adjusting LRH constituent or its concentration, and excitation wavelength. The results highlight the fabrication and applications of functional polymer NC hydrogels with highly tunable PL function.  相似文献   

14.
Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2 nanocomposite hydrogels. Both TiO2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water.  相似文献   

15.
A magnetic nanocomposite was developed and characterized. Adsorption of crystal violet (CV) dye from water was studied using the nanocomposite. A four-factor central composite design (CCD) combined with response surface modeling (RSM) was employed for maximizing CV removal from aqueous solution by the nanocomposite based on 30 different experimental data obtained in a batch study. Four independent variables, viz. temperature (10-50°C), pH of solution (2-10), dye concentration (240-400 mg/l), and adsorbent dose (1-5 g/l) were transformed to coded values and a second-order quadratic model was built to predict the responses. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. Optimization of the process variables for maximum adsorption of CV by nanocomposite was performed using the quadratic model. The Langmuir adsorption capacity of the adsorbent was determined as 81.70 mg/g. The model predicted maximum adsorption of 113.31 mg/g under the optimum conditions of variables (concentration 240 mg/l; temperature 50°C; pH 8.50; dose 1g/l), which was very close to the experimental value (111.80 mg/g) determined in batch experiment.  相似文献   

16.
A simple, one-step and dry hybridization technique was successfully implemented to fabricate superb and low-cost magnetic adsorbent for removal of organic dyes. The structural and textural properties of the prepared banded iron formation @bentonite (BIF@BEN) composite were clearly investigated using X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS), Brunauer–Emmett–Teller surface area (BET) and porosity analysis (BJH) techniques. The dye removal efficiency was optimized by studying several parameters, namely, pH, temperature, contact time and initial dye concentration. The maximum adsorption capacity achieved for crystal violet (CV) and acid red (AR) dyes were about 117 and 91 mg/g, respectively at pH 7, 60 °C in 60 min. The equilibrium data of both dyes’ adsorption on the BIF@BEN composite showed better fitting to Langmuir isotherm. The thermodynamic studies revealed that the adsorption process is spontaneous, endothermic and favorable at high temperatures. The prepared magnetic adsorbent showed higher adsorption performance than activated bentonite for removal of anionic dye (AR) and the same performance for removal of cationic dye (CV). The magnetic adsorbent is actually reused and easily separated from textile wastewater with total removal efficiencies 81% and 74.5% for all inorganic and organic pollutants, respectively after two adsorption cycles.  相似文献   

17.
Different materials in form of sponge, hydrogel and film have been developed and formulated for treating and dressing burn wounds. In this study, the potential of Laponite, a gel forming clay, in combination with an antimicrobial agent (mafenide), as a wound dressing material was tested in vitro. Laponite/mafenide (Lap/Maf) hydrogel was formulated in three different ratios of Lap/Maf 1:1, 1:2, 1:3. Laponite/mafenide/alginate (Lap/Maf/Alg) film was also formulated by combining Lap/Maf gel (1:1) with alginate. Intercalation rate of mafenide into the layers of Laponite nanoparticles and physico-chemical properties, including wound dressing characteristics of materials were studied using various analytical methods. Furthermore, the degradation of materials and the release profile of mafenide were investigated in simulated wound exudates fluid and antibacterial effectiveness of the eluted mafenide was tested on a range of bacterial species. The cytotoxicity of materials was also evaluated in skin fibroblast culture. The results showed that mafenide molecules were intercalated between the nano-sized layers of Laponite. The eluted mafenide showed active antibacterial effects against all three tested bacteria. All intercalated mafenide released from Lap/Maf 1:1 and 1:2 gel formulations and nearly 80 % release from 1:3 formulation during test period. No significant difference was observed in release profile of mafenide between Lap/Maf/Alg film and Lap/Maf formulations. Wound dressing tests on Lap/Maf/Alg film showed it is a breathable dressing and has capacity to absorb wound exudates. The study showed that prepared Lap/Maf composite has the potential to be used as an antibiotic eluting gel or film for wound healing application. Additionally, Laponite has shown benefits in wound healing processes by releasing Mg2+ ions and thereby reducing the cytotoxic effect of mafenide on fibroblast cells.  相似文献   

18.
采用氩等离子对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸-2-羟基乙酯(HEMA)共聚物凝胶进行表面改性,对膜材料进行了光电子能谱(XPS)分析,并讨论了等离子处理时间及功率对凝胶亲水性及表面能的影响。研究结果表明,经等离子处理后凝胶表面引入了含氧极性基团,氧的含量从未处理的23%增加到26%,使材料亲水性得到改善;由于引入极性基团,材料的表面能随等离子处理时间和功率的增加而增加,从未处理前的45.9 mJ/m2增加到72.5 mJ/m2,极性力分量γPs随等离子体处理功率和时间的变化规律与表面能γs基本一致。  相似文献   

19.
以具有多重响应性的新型单体4-乙酰基丙烯酰乙酸乙酯(AAEA)和N,N′-二甲基丙烯酰胺(DMAA)为原料,采用溶液自由基聚合法合成了具有多重响应性的水凝胶,研究了凝胶的溶胀行为以及在不同离子强度、温度、pH值条件下共聚水凝胶的响应性能。结果表明,随凝胶中AAEA含量的增加,凝胶的溶胀方式由Fick型转变为非Fick型;凝胶对外界离子强度、温度、pH值的变化产生响应,当NaCl浓度约为0.1mol/L时,凝胶的离子响应性出现较大的突变;随温度的升高,凝胶疏水性增大,85℃时凝胶的保水率只有60%;低pH值时,凝胶收缩,随pH值的增大,凝胶内P-AAEA部分解离加剧,静电斥力使凝胶溶胀。  相似文献   

20.
Natural network-structured hydrogels (e.g. bacterial cellulose (BC)) can be synthesised with specific artificial hydrogels (e.g. poly(2-hydroxyethyl methacrylate) (PHEMA)) to form a tougher and stronger nanofibre-reinforced composite hydrogel, which possesses micro- and nano-porous structure. These synthetic hydrogels exhibit a number of advantages for biomedical applications, such as good biocompatibility and better permeability for molecules to pass through. In this paper, the mechanical properties of this nanofibre-reinforced hydrogel containing BC and PHEMA have been characterised in terms of their tangent modulus and fracture stress/strain by uniaxial compressive testing. Numerical simulations based on Mooney-Rivlin hyperelastic theory are also conducted to understand the internal stress distribution and possible failure of the nanofibre-reinforced hydrogel under compression. By comparing the mechanical characteristics of BC, PHEMA, and PHEMA-based nanofibre reinforced hydrogel (BC-PHEMA) under the compression, it is possible to develop a suitable scaffold for tissue engineering on the basis of fundamental understanding of mechanical and fracture behaviours of nanofibre-reinforced hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号