首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil samples were collected at 15-cm increments to a depth of 75 cm from plots on a silt loam soil where until several years earlier and for 14 years, anaerobically digested sewage sludge had been annually applied by furrow irrigation. The study protocol consisted of four replications of 6.1 x 12.2-m plots with 0 (T0), 1/4-maximum (T1), 1/2-maximum (T2) and maximum (T3) sludge application rates randomized within blocks. When sludge applications were terminated, maximum sludge-treated plots had received 765 Mg ha-1 (dry weight equivalent) of sludge solids. Total soil concentrations of Cd, Cr, Cu, Ni, Pb and Zn had been significantly enhanced by all sludge application rates to a soil depth of 30 cm. Below the 30-cm depth, total soil Cd was increased to 75 cm, total Zn to 45 cm (T2 and T3 only), total Cr to 60 cm (T2 and T3 only), but total Cu, Pb, and Ni were not increased at depth. Despite the lack of significant increases in subsoil concentrations for some metals, mass balance calculations showed a relatively high proportion of all the above sludge-borne heavy metals to be unaccounted for in the soil profile for each application rate. Mass balance calculations of losses ranged from a high of 60% for Ni to a low of 36% for Cu and Pb. Similar losses were calculated from metal concentrations measured in soil samples taken at the time the sludge was applied. In soil surface samples (0-15 cm) from maximum sludge-treated plots, percentages of total metal concentration extracted with 4.0 M HNO3 ranged from a low of 31 for Zn to a high of 75 for Cu. Efficiency of metal extraction by HNO3 was inconsistent, depending on the soil horizon and sludge treatment, so that evaluation of HNO3-extractable metals is not a reliable method of estimating total metal retention in the profiles. In soil surface samples from maximum sludge-treated plots, the percentage of total metal contents extracted with DTPA ranged from a low of 0.03 for Cr to a high of 59 for Cd. The DTPA extractable levels of Cu, Ni, and Pb were higher in the subsoils of the sludge-treated soils, indicating that these metals had been redistributed from the surface layer to deeper zones in the profile of sludge-amended soil, despite the absence of elevated total concentrations of these three metals in the deeper subsoil.  相似文献   

2.
In the northern Campine in Belgium, large areas are contaminated by heavy metals such as Zn and Cd due to the (former) non-ferro metal industry. In the sandy soils, the heavy metal adsorption/attenuation in the spodic horizon represents the main retention mechanism of leached pollutants from the contaminated topsoils. In this study, the pH-dependent behaviour of the elements in these spodic horizons was tested by pH(stat) experiments and compared to sandy loam soils. Extractions with CaCl(2) 0.01 M and EDTA 0.05 M provided a further insight into the binding mechanisms. The results indicate that organic matter is the main factor responsible for the mobility of Cd, Zn and Ca in the spodic horizons. The binding of elements is not very strong, however, and highly dependent on pH. A slight decrease in pH can cause a significant release of metals from the spodic horizons, with up to 60% of Cd and 90% of Zn being released within a 1.5 unit change in pH (starting from the naturally occurring pH). This pH change can happen rapidly in these soils, due to the low buffering capacity, and is realistic given the acidification in Flanders. For the sandy loam soils, a pH decrease of 3 units is needed to release 40% of Cd and 20% of Zn, and the acid neutralization capacity is exhausted more gradually, suggesting that slower buffering mechanisms take place. For the sandy loam soils, Cd retention is mainly governed by organic matter, while for Zn other factors such as the clay minerals also play an important role. Despite the high potential mobility and pH dependence of the heavy metal retention in the spodic horizons, the actual risk for groundwater pollution is limited. For the diffusely contaminated areas, where traditional remediation is not an option, spodic horizons may therefore contribute to a natural attenuation of the soil contamination.  相似文献   

3.
An inventory of heavy metals inputs to agricultural soils in England and Wales   总被引:112,自引:0,他引:112  
An inventory of heavy metal inputs (Zn, Cu, Ni, Pb, Cd, Cr, As and Hg) to agricultural soils in England and Wales in 2000 is presented, accounting for major sources including atmospheric deposition, sewage sludge, livestock manures, inorganic fertilisers and lime, agrochemicals, irrigation water, industrial by-product 'wastes' and composts. Across the whole agricultural land area, atmospheric deposition was the main source of most metals, ranging from 25 to 85% of total inputs. Livestock manures and sewage sludge were also important sources, responsible for an estimated 37-40 and 8-17% of total Zn and Cu inputs, respectively. However, at the individual field scale sewage sludge, livestock manures and industrial wastes could be the major source of many metals where these materials are applied. This work will assist in developing strategies for reducing heavy metal inputs to agricultural land and effectively targeting policies to protect soils from long-term heavy metal accumulation.  相似文献   

4.
Heavy metal pollution of soils affected by the Guadiamar toxic flood   总被引:6,自引:0,他引:6  
Total heavy metal concentrations were determined in soil samples of seven selected areas along the Guadiamar river valley affected by the toxic flood, after removal of the deposited sludge. Mean total concentrations of nine elements (As, Au, Bi, Cd, Cu, Pb, Sb, Tl and Zn) out of the 23 (As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, In, Mn, Mo, Ni, Pb, Sb, Sc, Sn, Th, Tl, U, V, Y and Zn) analysed were higher in sludge-covered soils than in unaffected soils. Mean values of total As, Au, Pb, Sb, Tl and Zn in sludge-affected soils were higher than the upper limits for normal soils world-wide. Mean concentrations of Bi, Cd and Cu were within these ranges, although some individual values exceeded the upper limits. In all sampling areas, severe heavy metal pollution was observed in the superficial layers (0-20 cm) of most of the affected soils, which decreased downward in the soil profile. Generally, in soils with more than 25% of clay, concentration of heavy metals below the 20-cm depth decreased to values close to those of the background level of the Guadiamar valley soils, while in coarser soils, heavy metal pollution penetrated below this depth, being noticeable down to a depth of at least 50-80 cm.  相似文献   

5.
电动力修复技术去除城市污泥中的重金属研究   总被引:16,自引:1,他引:16  
分析了城市污水处理厂污泥中重金属的形态,重点考察了不同形态的Cd、Zn在电动力作用下的去除率。结果表明,污泥经电动力作用5d后,对Cd、Zn的总去除率分别为64.50%、65.02%,其中对易被植物吸收的非稳态(可交换态、碳酸盐结合态和铁锰氧化物结合态)Cd、Zn的去除效果尤为明显,去除率分别高达68.60%、75.73%。可见,应用电动力修复技术去除污泥中的重金属是可行的,修复后的污泥可进行土地利用。  相似文献   

6.
Digested biosolid (SS) and municipal solid waste (MSW) were surface-applied to a degraded carbonated soil, under semi-arid environment, at rates of 0 and 80 Mg/ha, to determine the changes in organic matter and in the distribution of heavy metals in the topsoil, 1 year after its application. Waste application slightly increased the organic matter content and improved the composition of humic fractions in the treated soils, mainly in the MSW amended plots. A sequential extraction method (Tessier et al., 1979) was used to determine the distribution of Cd, Cr, Cu, Ni, Pb and Zn in both the waste and the amended.soils. Waste application had little effect on the total concentration of Ni and Cr in the treated soils as a consequence of the low availability of these metals in the wastes. A considerable increase of Cd, Cu, Pb and Zn was observed as a consequence of the high content and/or high availability of these metals in the wastes. The more labile fraction (exchangeable fraction) of all metals studied increased slightly (< 1.5 mg/kg) when SS and MSW were added. However, a remarkable increase in the Fe/Mn oxide fraction of Cd, Cu and Pb and in the organic fraction of Zn were noted in treated plots, this increase being higher in the MSW treated soils.  相似文献   

7.
This study is one of very few dealing with the distribution and the origin of heavy metals in French soils from a priori non-polluted forest areas. The abundance of heavy metals measured in these soils decreases as follows: Cr>Zn>Pb>Ni>Cu>Co>Cd. Total concentrations of Pb, Cr and Ni in some soils exceed the European thresholds for non-polluted soils and even the French association of normalization critical values for sludge spreading. The lowest heavy metal contents are observed in acid soils while the highest concentrations are in the calcaric cambisol and in the mollic andosol, which is rather scarce as compared with the other French forest soils. With the exception of the podzol, Cr and Ni concentrations increase with depth in all soil profiles. The distribution pattern of Co, Cu, Zn depends on the soil characteristics. In some acid soils, however, Cu and Zn decrease with depth. Pb and Cd are accumulated in the upper soil horizons. Heavy metals accumulate in deep soil horizons in relation to important clay content in the dystric planosol and stagnic luvisol. The concentration of each heavy metal is always controlled by different parameters (soil pH, iron and aluminum oxide content, clay content, organic matter and cation exchange capacity), which are heavy metal specific. This study highlights the metal-trapping character of andosol and calcaric soil, the weak heavy metal retention in acid soils, the leaching and trapping character in leached clayed soils, and the migration of heavy metals in the podzol. Pb and Cr concentrations indicate a significant enrichment in surface horizons from various soils in areas which receive significant acid atmospheric pollution. Particularly, the highest Pb content is observed in a soil located in the N-NE part of France. Lead isotope ratios measured in the cambic podzol and the calcaric cambisol, exhibit the importance of the anthropogenic sources and particularly the influence of global atmospheric inputs from leaded gasoline compared to regional and local industrial emissions. The anthropogenic Pb contribution is estimated to 83, 30 and 11%, respectively, for surface, intermediate and deep horizons of the cambic podzol located in the northern part of France, and to 68% in surface horizon of the calcaric cambisol located in the Alps.  相似文献   

8.
The use of municipal solid waste (MSW) compost as fertilizer may cause increased leaching due to its high content of trace metals and thus pose a threat to groundwater quality. The effect of MSW compost application on trace metal leaching in calcareous soils has been studied in soil column experiments under laboratory conditions using three soils from the study area in the Gaza Strip and Israel. Higher levels of organic matter in solution (TOMS), nitrate, and the trace metals Cu, Ni and Zn were found in the leachates of a sandy soil and, to a lesser extent, a loamy soil, to which MSW compost had been applied at a rate of 65 Mg ha(-1) (dry weight basis). Nevertheless, the majority of water-soluble trace metal species from compost accumulated in the topsoil rather than washing out, with the exception of aqueous Ni species. Ni concentrations exceeded the maximum allowable limits for drinking water (in Germany: 50 microg l(-1)) at peak times in the leachates from sandy soil, while all other trace metals remained far below the corresponding limits. The highest absolute concentrations of trace metals were found for the leaching of Cu from compost-amended sandy soil (100 microg l(-1)). For Cd, Pb and Hg no evidence of downward movement was found in any assay. Gel filtration studies of the collected soil leachates showed that all trace metals encountered in the leachates existed mostly as organic complexes. In sandy soil most of the water-soluble organic matter added with the compost had leached from the rootzone after a year's equivalent of rainfall, while TOMS mobility was greatly reduced in the loamy soil. The makeup of the TOMS in the sandy soil and its metal-binding capacity was strongly influenced by compost-derived dissolved organic matter (DOM) as observed by FTIR spectrometry. Hence the vertical displacement of trace metals (Cu, Ni, Zn) in these calcareous soils seemed to result primarily from the presence of mobile metal-organic complexes in the soil solution after compost addition. Further studies are required to validate these findings in the field, especially to assess the risk of Cu and Ni leaching in sandy soil.  相似文献   

9.
The decay of Escherichia coli in a sandy loam soil, amended with enhanced and conventionally treated biosolids, was investigated in a field experiment following spring and autumn applications of sewage sludge. Control soils, without the application of biosolids, were also examined to determine the background indigenous populations of E. coli which are present in the environment. The survival of indigenous E coli and populations of E coli applied to soil in biosolids, is assessed in relation to environmental factors influencing pathogen-decay processes in soil.  相似文献   

10.
堆肥处理对排水污泥中重金属的钝化作用   总被引:11,自引:1,他引:11  
讨论了城市排水污泥中重金属的含量和形态分布特征,分析了堆肥处理对污泥中重金属结合形态转化的影响。根据不同学者的研究结果,提出堆肥处理可降低污泥中Zn、Cu、Pb、Mn等重金属的活性,并指出堆肥处理是降低污泥在土地利用中重金属污染风险的途径。  相似文献   

11.
In 1998, a toxic spill from a pyrite mine (Aznalcóllar, SW Spain) contaminated some 40 km2 of the Agrio and Guadiamar river valley with heavy metal-enriched tailings sludge and acidic mine water. The aim of this study is to describe the long-term effects of heavy metal migration particularly with respect to the extent of vertical redistribution of As, Cd, Cu, Fe, Pb, S, Sb and Zn in soils and sediments of the river Guadiamar 4 years after the accident. For an assessment of the mobility behaviour, chemical associations of Cu, Pb, Sb and Zn in depth profiles polluted by tailings were determined by using sequential extraction procedures. In 2002, residues of toxic tailings were found in several places along the river Guadiamar. Heavy weathering has accelerated heavy metal displacement and contamination of the surrounding soil. Two element groups of contrary mobility can be distinguished: Cd and Zn are highly mobile and show strong displacements in acidic surroundings. Accumulation zones for Cd and Zn develop in less acidic soil layers due to the occurrence of Fe oxides, which constitute retaining fractions for these elements. The immobile elements Pb and Sb represent the second group. Highest concentrations of Pb and Sb are found in the tailings sludge. Cu and As show a variable distribution pattern. As a consequence of the heavy metal migration, an accumulation zone has formed up to 30 cm into the underlying soil at the time of investigation. In the future, there may be further penetration of heavy metals to greater depths.  相似文献   

12.
Soybean (Glycine max (L.) Merr.) uptake of the elements, Cd, Ni, Pb, Cu, Zn and Mn, from a sewage sludge-amended Mecklenburg soil was conducted in the greenhouse. “Bragg” soybeans were grown in pots for five weeks at which time the tops and roots were sampled separately for elemental analysis. Soil samples from each pot were extracted with DTPA (diethylenetriaminepentaacetic acid) and the concentration of extractable elements correlated with the elemental content in the soybean plant. There was a significant increase in dry matter production with sludge treatment. Concentrations of Cd, Ni and Pb in the soybean shoots and roots increased from sludge-amended soil as compared to the control. The metal concentration in the soybean tissue increased with increasing levels of sludge amendment. Uptake of the heavy metals was greater by the roots than by the shoots indicating some barrier to movement of the metals from roots to shoots. The DTPA extractable Cd in sludge-amended soil increased significantly, and showed correlation to the soybean tissue metal concentrations. As for the micronutrients, Cu increased in the soybean shoot as the extractable Cu increased. There was no significant relationship between soybean tissue Zn and Mn and extractable Zn and Mn.  相似文献   

13.
In Mediterranean frequently burnt areas, fire and erosion result in the decrease of soil fertility, so afforestation is a major concern. We carried out an in situ experiment of compost amendment to improve survival and growth of planted tree seedlings. One-year-tree seedlings of native species (Quercus ilex, Pinus halepensis and Pinus pinea) were planted on a frequently burnt calcareous site. Three rates of fresh co-composted sewage sludge and greenwastes (control without compost, 20 and 40 kg m(-2) of compost) were incorporated into the soil at each seedling stem. Changes of soil properties and tree development were studied during 3 years (2001-2003) and 2 years (2002-2003) respectively. The compost improved survival of Quercus ilex and Pinus pinea seedlings in severe drought conditions, but had no effect on Pinus halepensis. For all species seedling length and radial growth and NPK nutrition were increased for both rates of amendment. Amendment improved soil fertility, but available P concentration increased 13 fold in the neighbouring soil of seedlings amended at the maximal rate compared to control. However, amendment did not significantly increase concentrations of Cd, Cr, Ni and Pb in soils or tree seedlings. It increased Cu and Zn total and available concentrations in soils, while foliar Cu and Zn concentrations in the seedlings remained similar in all plots. Compost can efficiently help afforestation of dry soils with low organic matter content. However, sewage sludge concentrations in P, and to a lesser extent in Cu and Zn, limit rates of application that can be applied without environmental hazard.  相似文献   

14.
Phthalates and nonylphenols in profiles of differently dressed soils   总被引:15,自引:0,他引:15  
The concentrations of nonylphenols and phthalates in depth profiles of eight differently dressed, fertilised and cultured fields were investigated. The fields were typical for Danish agriculture and comprised an uncultured location, two manured fields, an artificially fertilised field and three fields amended with different amounts of sewage sludge. In addition, a location receiving run-off from a sewage sludge storage facility were investigated. At each location, two 50 cm vertical soil cores were taken, divided into sections of 10 cm each and analysed for nonylphenols and phthalates by high-resolution mass spectrometry. Di-(2-ethylhexyl)-phthalate (DEHP) was the most abundant phthalate in all samples whereas Di-(n-butyl)-phthalate (DBP) played a minor role. Nonylphenols occurred in significant concentrations only in soil samples exposed to high amounts of sludge and at the run-off location. A close relationship was found between the concentrations of contaminants in the soil samples and the method of dressing. The concentrations were low at comparable levels in the soil samples from the artificially fertilised field and in the fields amended with low amounts of sludge, as well as in the manured fields. Remarkably, these concentrations did not differ significantly from the level in an uncultured recreational preserved area, which was used as a reference. In contrast, much higher levels of contaminants were found in the soil samples from fields exposed to high amounts of sludge. We must conclude that sludge amendment below a certain limit does not lead to elevated levels of nonylphenols and phthalates in the soils, whereas heavy sludge amendment leads to the accumulation of these contaminants. For the vertical distribution of substances in the soils, an influence of soil characteristics on the concentration profile was noted. Thus, in soils with visible clay in the upper layers, a DEHP maximum occurred at a depth of 10-20 cm, whereas in most sandy soils no such maximum was observed. A 2-year time trend study of the highly sludge amended soil showed no measurable reduction in the substances during this period. The time study further suggested a downward movement of the DEHP maximum of approximately 10 cm per year.  相似文献   

15.
The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area.  相似文献   

16.
为了降低城镇生活污泥中重金属含量,采用三槽型电解槽研究了反应时间和NaClO预处理对未脱水污泥中重金属Zn、Cu、Cr和Ni去除率的影响。试验结果表明,延长反应时间可以提高未脱水污泥中重金属去除率。电渗析反应时间为14 h时,污泥中Zn、Cu、Cr和Ni的去除效果较好,去除率分别为52. 08%、27. 24%、31. 66%和46. 42%。污泥中重金属的初始非稳定态比例越大,电渗析反应后的去除率越高。NaClO/HNO_3组合预处理的污泥中重金属去除率最高,对Zn、Cu、Cr和Ni的去除率分别达到70. 32%、35. 39%、36. 80%和56. 78%。  相似文献   

17.
We have measured the concentrations of heavy metals in soils, earthworms and tissues of woodcocks in Quaderna Valley, northern Italy. The soil concentration of metals analysed in this research is consistent with data reported by other authors for uncontaminated or slightly contaminated soils. In earthworms, metals were mostly accumulated in the encapsulating chloragogenous tissue; the positive correlation between Cu concentration in the soil and in earthworms is noteworthy. Heavy metal distribution in the tissues of woodcock showed that Cd accumulation in the kidney was linked to the diet. Cu and Fe were preferentially concentrated in the liver and Zn in the testis. Kidney Cd and Zn concentrations were higher in adults than in juveniles. In addition, a main kidney metallothionein isoform, containing Cd and Zn, was isolated. In the kidney, Cd levels were linearly correlated with the concentration of metallothionein. Of the investigated metals, Cd raises the greatest concern, due to the increasing soil contamination by human activities.  相似文献   

18.
Heavy metal content (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) was analysed in the edible parts of two types of horticultural crops (leaf and inflorescence crops) from 30 agricultural fields in Castellón (Spain), a representative area of the European Mediterranean region. Selected soil properties relevant to control the mobility and bioavaibility of heavy metals were analysed for the general characterisation of these agricultural soils. The levels of clay, high percentages of organic matter and the presence of carbonate seem to suggest an important retention of heavy metals by these components in most of these soils. However, the high salinity in some fields (>4 dS/m) seems to facilitate the mobility of some heavy metals (e.g. Cu). The mean values of total contents of heavy metals in soils were similar to values obtained in other works on Spanish agricultural soils. However, there were some fields with a metal content (particularly Cu, Pb or Zn) higher than these works, reflecting an important anthropogenic source. In seven fields, the crop contents of Cd and/or Pb were higher than the maximum levels established by the Commission Regulation no. 466/2001 for horticultural crops. Heavy metal contents in leaf crops were higher than in inflorescence crops, except for Zn. The differences for Cd, Cr, Cu, Fe and Mn contents between these two types of crops were statistically significant. The analysis of crop heavy metal contents showed a higher absorption and/or accumulation of heavy metals in leaf crops than in inflorescence crops. Differences in crop characteristics seem to be responsible for the differential accumulation of heavy metals. Furthermore, agronomic practices and other sources of heavy metals (e.g. atmospheric deposition for Cd and Pb) may also have some influence on crop accumulation. Given the relevance of horticultural crops in the Mediterranean diet, it is highly necessary to extend the experience of this work to other areas of the European Mediterranean region.  相似文献   

19.
Heavy metal contamination of soils resulting from mining and smelting is causing major concern due to the potential risk involved. This study was designed to investigate the heavy metal (Cu, Zn, Pb and Cd) concentrations in soils and food crops and estimate the potential health risks of metals to humans via consumption of polluted food crops grown at four villages around the Dabaoshan mine, South China. The heavy metal concentrations in paddy and garden soils exceeded the maximum allowable concentrations for Chinese agricultural soil. The paddy soil at Fandong village was heavily contaminated with Cu (703 mg kg− 1), Zn (1100 mg kg− 1), Pb (386 mg kg− 1) and Cd (5.5 mg kg− 1). Rice tended to accumulated higher Cd and Pb concentration in grain parts. The concentrations of Cd, Pb and Zn in vegetables exceeded the maximum permissible concentration in China. Taro grown at the four sampled villages accumulated high concentrations of Zn, Pb and Cd. Bio-accumulation factors for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Pb. Bio-accumulation factors of heavy metals were significantly higher for leafy than for non-leafy vegetable. The target hazard quotient (THQ) of rice at four sites varied from 0.66-0.89 for Cu, 0.48-0.60 for Zn, 1.43-1.99 for Pb, and 2.61-6.25 for Cd. Estimated daily intake (EDI) and THQs for Cd and Pb of rice and vegetables exceeded the FAO/WHO permissible limit. Heavy metal contamination of food crops grown around the mine posed a great health risk to the local population through consumption of rice and vegetables.  相似文献   

20.
Application of the BCR three-step sequential extraction procedure to sewage sludge samples collected at an urban wastewater treatment plant (Dom ale, Slovenia) is reported. The total concentrations of Cd, Cr, Cu, Fe, Ni and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS) under optimised measurement conditions. Total acid digestion including hydrofluoric acid (HF) treatment and aqua regia extraction were compared in order to estimate the efficiency of aqua regia extraction for determination of total metal concentrations in sewage sludge. It was found experimentally that aqua regia quantitatively leached these heavy metals from the sewage sludge and could therefore be applied in analysis of total heavy metal concentrations. The total concentrations of 856 mg kg−1 Cr, 621 mg kg−1 Ni and 2032 mg kg−1 Zn were higher than those set by Slovenian legislation for sludge to be used in agriculture. Total concentrations of 2.78 mg kg−1 Cd, 433 mg kg−1 Cu and 126 mg kg−1 Pb were below those permitted in the relevant legislation. CRM 146R reference material was used to follow the quality of the analytical process. The results of the BCR three-step sequential extraction procedure indicate high Ni and Zn mobility in the sludge analysed. The other heavy metals were primarily in sparingly soluble fractions and hence poorly mobile. Due to the high total Ni concentration and its high mobility the investigated sewage sludge could not be used in agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号