首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
基于锂电池荷电状态(SOC)和健康状态(SOH)的耦合关系,设计了SOC-SOH联合估计系统。首先,构建锂电池等效电路模型和自适应扩展卡尔曼滤波(AEKF)算法,进行锂电池SOC估计;其次,建立锂电池分数阶模型,设计模糊控制器辨识分数阶模型参数,基于分数阶模型参数和电池充电工况确立健康因子,引入麻雀搜索算法(SSA)改进反向传播神经网络(BPNN),进行锂电池SOH估计;然后,集成SOC与SOH估计方法,设计联合估计系统;最后,设计锂电池老化实验、动态应力测试(DST)和US06动态实验方案,对比分析不同工况下不同算法的SOC-SOH联合估计效果。结果表明,基于提出的SOC-SOH联合估计方法,估计误差小于1%,具有良好的估计特性。  相似文献   

2.
针对电动汽车动力锂离子电池的状态估计问题,提出一种基于分数阶等效电路建模方法,并采用分数阶卡尔曼滤波算法估计电池荷电状态(SOC)。首先建立基于二阶等效电路的分数阶电池模型,采用遗传算法辨识阶数,然后利用分数阶卡尔曼滤波算法估计电池SOC,并与扩展卡尔曼滤波算法进行比较。实验结果表明,在恒流放电下采用分数阶模型,其端电压最大绝对误差为0.014V,SOC最大估计误差不超过2%。本文提出的基于二阶等效电路的分数阶模型及分数阶卡尔曼滤波算法,不仅给出了一种准确、可靠的建模方法,而且为有效提高电池管理系统中SOC估计的准确性提供了途径。  相似文献   

3.
高昕  韩嵩 《电源技术》2021,45(9):1140-1143,1208
锂离子电池荷电状态(SOC)和健康状态(SOH)的精确估计对电动汽车稳定运行十分重要.以精确估计电池SOC和SOH为目标,提出了一种基于分数阶模型的协同估计算法.建立基于二阶RC电路模型的分数阶电池模型,采用自适应遗传算法(AGA)辨识模型参数,利用分数阶扩展卡尔曼滤波(FOEKF)算法估计SOC,并结合自适应无迹卡尔曼滤波(AUKF)算法估计SOH,迭代更新内阻与SOC进而实现SOC与SOH精确的协同估计.在城市道路循环工况(UDDS)下使用Matlab工具验证和对比了算法精度,平均误差均控制在2%以内.结果表明,该协同估计算法能够精确估计电池SOC和SOH,为电池状态估计提供了一种方法.  相似文献   

4.
电池特性建模及模型参数在线估计是电动汽车电池管理系统的关键技术,以磷酸铁锂电池这一非线性系统为研究对象,以包含分数阶元件的简化电池电化学阻抗谱模型为基础,建立了该模型的状态转移方程和系统观测方程,运用分数阶联合卡尔曼滤波器(FJKF)对该模型的扩散极化电压和模型参数进行了在线估计。试验结果表明,该模型能较好地表征磷酸铁锂电池的动态特性,分数阶联合卡尔曼滤波算法在参数估计过程中能够保持很好的精度,同时该方法对多种测试工况都有较好的适用性,算法估计得到的模型参数值具有较好的稳定性。  相似文献   

5.
丁羿茗  吕瑞强  蒋超 《电源技术》2021,45(9):1148-1151
以分数阶微分理论为依据,建立分数阶二阶RC等效电路模型,采用自适应遗传算法(AGA)结合脉冲放电实验对模型的参数进行辨识,并对整数阶模型和分数阶模型的精度进行对比.针对分数阶模型的特点以及扩展卡尔曼滤波器(EKF)算法的不足,提出了基于分数阶模型的多新息自适应EKF算法,通过与健康状态(SOH)联合估计来实时修正荷电状态(SOC)模型参数.结果表明,搭建的分数阶模型可以更好地描述锂电池的特性,分数阶多新息自适应扩展卡尔曼滤波器(FOMIAEKF)算法和联合估计方法可以有效提高估算的精度和跟踪的速度.  相似文献   

6.
针对电动汽车锂离子电池整数阶模型不能精确反映电池极化反应的问题,提出了一种基于自适应遗传算法(AGA)的分数阶模型,并采用分数阶多新息卡尔曼滤波(FOMIEKF)算法对电池荷电状态(SOC)估计.在二阶RC等效电路模型的基础上建立分数阶模型并用AGA辨识模型参数,然后用FOMIEKF算法进行SOC估计,最后与卡尔曼滤波(EKF)、分数阶扩展卡尔曼滤波(FOEKF)算法进行比较.结果表明,在混合动力脉冲测试下,模型端电压最大误差低于1%,SOC平均误差与最大误差比传统方法分别下降了0.79%、0.95%.因此,基于AGA分数阶模型的FOMIEKF方法可以有效估计SOC.  相似文献   

7.
锂离子电池荷电状态(SOC)的准确估计是电池管理系统最基本和最首要的任务。文中采用二阶RC模型和一阶斯特林插值滤波算法对锂电池的SOC进行估计。一阶斯特林插值滤波算法基于卡尔曼滤波算法,但是不需要每次都进行jacobi矩阵的更新计算。对二阶RC模型的参数进行了辨识,给出了一种基于一阶斯特林差值滤波器的锂电池SOC估计算法。搭建了基于DSP2812的硬件平台,用实验的方法与仿真结果进行了对比。仿真和实验结果表明,该模型能很好地模拟锂电池的动态特性,且一阶斯特林插值滤波算法有着比扩展卡尔曼滤波算法更精确的估计值。  相似文献   

8.
基于分数阶微积分理论及实际电容在本质上是分数阶的事实,整数阶建模会导致算法不精确。因此,针对这一问题,建立锂电池分数阶PNGV等效电路模型并进行理论分析,通过混合脉冲功率特性实验(HPPC)对模型参数进行辨识。针对所建的模型,建立离散状态方程和测量方程,运用分数阶卡尔曼滤波算法(FOKF)预测电池荷电状态(SOC),并将所得的结果与无迹卡尔曼滤波算法(UKF)、实验参考值进行比较。结果表明,建立的分数阶模型更能真实地模拟电池的极化效应和充放电特性,所构造的FOKF算法在估算精度和跟踪速度上也有一定的提高。  相似文献   

9.
杨睿  张向文 《电源技术》2022,46(1):63-67
为提高等效电路模型准确性,考虑等效电容分数阶本质和锂电池充放电不同阶段的不同变化特性,采用分数阶微积分理论建立了基于二阶RC模型的电池分段分数阶等效电路模型.用粒子群算法分段辨识分数阶阶数,通过混合脉冲功率特性(HPPC)实验辨识模型参数,使模型更符合电池实际工作状态.实验结果显示,新模型能够更准确地模拟电池充放电特性...  相似文献   

10.
徐鹏跃  张国玲  王涛  程佳 《电池》2024,(1):72-76
等效电路模型可用于对锂离子电池进行监控和管理,其精度与复杂性至关重要。选用整数一阶、整数二阶和分数一阶等3种电路模型对锂离子电池进行等效建模,采用基于遗忘因子的递推最小二乘(FFRLS)法辨识模型中的参数,并应用辨识所得的参数,通过扩展卡尔曼滤波算法估计荷电状态(SOC)。对比模型预测的端电压与真实端电压,以及估计所得SOC与真实SOC,发现整数一阶模型估计SOC的误差约为8%,整数二阶模型的误差约为7%,而分数一阶模型的误差仅约为1%。  相似文献   

11.
彭湃  程汉湘  陈杏灿  李蕾 《电源技术》2017,(11):1541-1544
考虑到传统的卡尔曼滤波策略在未知干扰噪声环境下不能对锂离子电池的荷电状态(SOC)进行准确的估计,简要论述了锂离子电池的等效电路模型,提出了自适应卡尔曼滤波方法,利用Matlab/Simulink建立了基于自适应和常规的卡尔曼滤波法的锂离子电池SOC估计的仿真模型,分析研究了在未知干扰噪声下两种滤波法的SOC估计值变化曲线以及误差关系。仿真结果表明,采用自适应卡尔曼滤波方法估计的SOC误差较传统的要小,从而有效降低了未知干扰噪声对电池管理系统所受到的影响,且具有较好的鲁棒性,为今后深入研究动力电池SOC估计方法提供了一定的参考。  相似文献   

12.
基于深度学习的锂离子电池SOC和SOH联合估算   总被引:2,自引:0,他引:2  
锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学习的锂离子电池SOC和SOH联合估算方法。该方法能够基于门控循环单元循环神经网络(recurrent neural network with gated recurrent unit,GRU-RNN)和卷积神经网络(convolutional neural network,CNN),利用锂离子电池电压、电流、温度,实现锂离子电池全使用周期内SOC和SOH的同时估算,而且由于将锂离子电池的SOH估算值考虑到SOC估算中,能够消除锂离子电池老化因素对锂离子电池SOC估算造成的负面影响,从而提升SOC估算精度。两个锂离子电池测试数据集上的实验结果表明,提出的估算方法能够在不同温度和不同工况下实现锂离子电池全使用周期SOC和SOH联合估算,且获得较高的精度。  相似文献   

13.
Abstract

State of charge (SOC) is an important indicator for guiding the charging-discharging operation of lithium-ion batteries. In this article, the equivalent circuit model of lithium-ion battery and the variable forgetting factor (VFF) least squares model identification method are proposed. This parameter identification method can improve the accuracy of the lithium-ion battery model, thereby ensuring the accuracy of the SOC estimation. Furthermore, based on the lithium-ion battery model, the adaptive unscented Kalman filter (AUKF) algorithm is proposed to estimate SOC of lithium-ion batteries. Experimental results show that the AUKF algorithm is good robustness, fast convergence, practicality and small error in SOC estimation of lithium-ion batteries. In conclusion, the VFF least squares model identification method and the AUKF algorithm are promising engineering application method.  相似文献   

14.
程泽  李智  孙幸勉 《电源学报》2019,17(1):87-94
针对锂离子电池在电流状态突然变化时产生的松弛现象和滞回现象,在分析了电池等效电路模型的基础上,引入线性滤波器和滞回模块,建立了电池的自校正模型。通过恒流脉冲实验和动态应力工况测试验证自校正模型在对电池电压特性跟随的可靠性,并在该模型的基础上使用有限差分扩展卡尔曼滤波FDEKF(finite difference extended Kalman filter)算法实现了电池的荷电状态SOC(state of charge)估计。实验分析表明,自校正模型能较好地体现电池的动态特性,并使SOC估计保持很好的精度。  相似文献   

15.
锂离子电池最常用的等效电路模型为二阶RC等效电路模型。基于该模型的参数辨识存在所需辨识参数多、运算量大的缺点,同时荷电状态(state of charge, SOC)估计中状态方程存在复杂的指数运算等问题,这些都使得难以对多个串联电池进行SOC的在线估计。因此,提出了一种简化二阶电池模型。该模型忽略电池内部极化反应,只关注其外特性,使得参数辨识个数减少。该简化模型也使得状态空间方程中需要估计的状态变量个数减少,避免了复杂的指数运算,降低了计算复杂度和整体的运算量,有利于多个串联锂电池SOC的实时在线估计。通过对单体锂电池和串联锂电池进行参数辨识和SOC估计测试,验证了所提的简化模型在保证参数辨识及SOC估计精度的同时,大大提升了系统运算速度,进而提高了SOC估计的快速性。  相似文献   

16.
健康状态(state of health, SOH)是电池管理系统的重要参考依据,准确的SOH估计对保证电池安全稳定运行具有重大意义,其中提取可靠有效的健康特征描述电池老化状态以及构建精确稳定的估计模型是目前面临的主要问题。为了提高SOH估计精度,提出了一种基于模糊熵和粒子滤波(particle filter, PF)的锂离子电池SOH估计方法。首先,通过分析电池老化过程中的放电电压数据,提取模糊熵值作为电池的老化特征;其次,基于代谢灰色模型(metabolic grey model, MGM)和时间卷积网络(temporal convolutional network, TCN)构建描述锂电池老化特征的非参数状态空间模型;最后,通过PF实现锂电池SOH的闭环估计。此外,利用NASA锂电池数据集对所提出的SOH估计方法进行了验证,并与该领域其他方法进行对比实验。结果表明,所提方法最大估计误差在5%左右,相比于同类方法其估计精度提升了约50%,且在不同训练周期数条件下表现出较好的鲁棒性,验证了所提方法的可行性与优越性。  相似文献   

17.
为了能够准确估计锂离子电池的荷电状态(SOC),同时对电池实际可用的最大充、放电功率进行预测,在研究电池充、放电过程中的滞回现象的基础上,建立基于电压滞回特性的二阶RC等效电路模型。为了避免因噪声统计特性造成的误差,将H∞滤波算法应用到锂离子电池的SOC估计中,减少了估计过程中的模型误差和算法误差,提高了估计的鲁棒性。将电池电压、电流和SOC的估计值作为联合约束条件预测锂离子电池实际可用的最大充、放电功率,对电池做脉冲充、放电实验,实验分析表明,与混合脉冲功率特性(HPPC)测试方法相比,联合约束算法提高了预测电池功率的准确性。  相似文献   

18.
19.
Being one of the important parameters describing the state of power battery, state of charge (SOC) is essential for the electric vehicle battery management system (BMS). SOC estimation method, which combines the constructed controlled auto-regressive and moving average (CARMA) model with the feedforward-feedback compensation method used for revising SOC by the deviation of terminal voltage, is presented in this paper. Fully taken into account the measurement errors of voltage and current, the CARMA model is employed to estimate the battery open-circuit voltage (OCV). With the good consistency of the OCV-SOC curve under the process of battery charge and discharge cycles within a certain temperature range, OCV is adopted to estimate SOC. BP neural network rather than the high order polynomial approximation is used to capture the strong nonlinear relationship between OCV and SOC with the high precision. It is a big challenge for OCV-based SOC estimation that the flat area of OCV-SOC curve for lithium-ion power battery enlarges the measurement errors of OCV. By analyzing the flat characteristic of ΔSOC-OCV curve, the feedforward-feedback compensation for SOC is used for improving the accuracy of OCV-based SOC estimation. Experiment results confirm the effectiveness of the proposed approach that has evidently advantages over other estimation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号