首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以猪粪为原料,采用限氧热解法(700℃)制备生物炭并利用"硫酸+超声波"对其进行改性,通过元素分析、Boehm滴定、BET-N_2及电镜扫描等对改性前后生物炭的结构和性质进行了表征,并采用序批实验研究了其对水中Cr(Ⅵ)的吸附特性及影响因素。结果表明,改性猪粪生物炭的酸性含氧官能团含量、比表面积和总孔体积分别比改性前提高了1.7、5.1、14.5倍,对Cr(Ⅵ)的吸附效果相比改性前有显著提高,在pH为4.0、投加量为4.0 g/L的条件下,吸附在120 min左右达到平衡。该吸附行为符合准二级动力学模型和Langmuir单分子层吸附模型,理论最大吸附量q_m为26.045~32.601 mg/g,吸附过程以物理吸附为主,属于自发、放热、熵增加的过程。改性猪粪生物炭可作为一种性能优良、价格低廉的水体Cr(Ⅵ)吸附剂。  相似文献   

2.
以马铃薯秸秆为原料制备生物炭,对其进行超声改性得到改性生物炭。探究了改性生物炭对亚甲基蓝的吸附特性以及pH、投加量和离子含量对吸附效果的影响。结果表明,改性后的生物炭与原生物炭相比,吸附能力有所增强。准2级动力学模型(R~20.99)能更好的拟合动力学数据,颗粒内扩散方程拟合结果进一步表明,改性生物炭对亚甲基蓝的吸附受表面吸附和颗粒内扩散共同控制。Langmiur方程能较好的描述该吸附过程。热力学研究表明,改性生物炭吸附亚甲基蓝是自发、熵增的吸热过程。碱性环境有利于吸附反应的进行,在pH=2~11时,碱性越强,吸附效果越好。生物炭投加量为10 g/L时,对亚甲基蓝的去除率较为理想,离子含量的变化对吸附量无明显影响。  相似文献   

3.
《应用化工》2022,(2):285-289
花生壳在600℃焙烧制得生物炭(BC),用三氯化铁(FeCl_3)溶液进行改性,制备载铁改性生物炭(Fe-BC),采用扫描电子显微镜(SEM)、红外光谱(FTIR)进行表征,对高氟水进行了吸附处理研究。结果表明,当FeCl_3溶液浓度为4 mol/L,Fe-BC投加量为8 g/L,5 mg/L NaF溶液pH为7时,吸附性能良好,2 h后吸附饱和,饱和吸附量为1.545 mg/g。Fe-BC吸附氟离子的过程符合准二级动力学模型,其吸附模式符合Langmuir等温吸附模型。  相似文献   

4.
为了去除水体中的铀污染,以毛竹为原料,采用化学活化法制备改性竹基生物炭吸附材料。考察了吸附时间、吸附剂投加量、溶液初始pH和初始铀浓度对吸附效果的影响。通过扫描电镜、能谱分析、傅立叶变换红外光谱等分析手段,研究了改性竹基生物炭材料对铀吸附前后表面性质的变化。研究结果表明,改性竹基生物炭材料适用于pH为4.5的含铀水溶液的处理,并且该材料对铀的去除率远远高于竹基生物炭材料。  相似文献   

5.
以农业废弃物锯末为材料制备生物炭,用铁锰氧化物对锯末生物炭改性,探究某吸附As和Cd的能力与机制。结果表明,改性生物炭增大了孔径和比表面积,增加了更多的吸附点位,尤其是铁、锰、生物炭的质量比为1∶3∶15的吸附剂吸附效果最好,对于砷和镉的平衡吸附量分别增大了35倍和5倍,最大吸附量分别为7.452,17.053 mg/g。低pH环境下,Cd~(2+)的吸附受到抑制,而As~(3+)受pH影响较小。Cd和As吸附符合准二级吸附动力学模型,As和Cd的吸附热力学符合Langmuir模型,这表明吸附过程为单层吸附。  相似文献   

6.
以污泥生物炭作吸附剂处理水中Cr(Ⅵ),研究了共存腐殖酸对生物炭吸附性能影响。结果表明,腐殖酸能显著促进生物炭对Cr(Ⅵ)的吸附,大幅提高吸附量以及缩短吸附平衡时间,生物炭吸附过程符合准二级动力学模型。在溶液初始pH4.0,生物炭浓度20g/L,Cr(Ⅵ)初始浓度在50~800mg/L范围下,Langmuir模型比Freundlich模型更好地描述等温吸附行为。加入腐殖酸(20mg/L)后,拟合得到的理论饱和吸附量达10.10mg/g,较未加入腐殖酸的吸附量5.56mg/g提高近1倍。在pH2.0~8.0范围内,吸附量随溶液初始pH值升高而减小。  相似文献   

7.
以农业废弃物锯末为材料制备生物炭,用铁锰氧化物对锯末生物炭改性,探究某吸附As和Cd的能力与机制。结果表明,改性生物炭增大了孔径和比表面积,增加了更多的吸附点位,尤其是铁、锰、生物炭的质量比为1∶3∶15的吸附剂吸附效果最好,对于砷和镉的平衡吸附量分别增大了35倍和5倍,最大吸附量分别为7.452,17.053 mg/g。低pH环境下,Cd(2+)的吸附受到抑制,而As(2+)的吸附受到抑制,而As(3+)受pH影响较小。Cd和As吸附符合准二级吸附动力学模型,As和Cd的吸附热力学符合Langmuir模型,这表明吸附过程为单层吸附。  相似文献   

8.
《应用化工》2022,(12):3350-3354
水体重金属污染对自然环境和人体健康造成了极大的危害,开发新型污染治理材料具有重大意义。本研究以玉米秸秆、牛粪粉末、小麦秆和麦穗为原料,以羟基磷灰石(HAP)和磷酸二氢钾(KH_2PO_4)为改性剂,采用浸渍-热解法制备生物炭,并探讨了生物炭对水中Pb(Ⅱ)的吸附效果。结果表明,磷基改性生物炭相比未改性生物炭对铅的吸附容量显著提高,KH_2PO_4改性玉米秸秆-牛粪生物炭对铅的吸附量较未改性增加了394.6 mg/g,提高了478.0%;HAP改性麦穗生物炭对铅的吸附量较未改性增加了507.9 mg/g,提高了997.7%;玉米生物炭原料中添加牛粪可显著提高改性生物炭对铅的吸附能力,相对于未添加,HAP和KH_2PO_4改性玉米秸秆-牛粪生物炭的铅吸附量分别增加了210.6,177.1 mg/g,提高了140.0%和59.1%。本研究制备的KH_2PO_4改性玉米秸秆-牛粪生物炭和HAP改性小麦生物炭对铅均表现出较强的吸附效果。  相似文献   

9.
以棉籽壳制备的生物炭为原始炭(BC),对其进行KMnO_4改性,制得改性生物炭(BC-Mn),并通过实验研究了BC-Mn对水中铅的吸附性能。结果表明:BC-Mn具有较大的比表面积和丰富的孔径结构。当初始Pb~(2+)质量浓度为300 mg/L,pH=5,吸附剂投加量为2 g/L时,吸附效果最佳,最大吸附量可达到126.79 mg/g。BC-Mn对Pb~(2+)的吸附符合Langmuir等温方程和拟二级动力学模型,且该吸附过程是可以自发进行的吸热过程。模拟废水实验结果表明,BC-Mn是一种吸附性能良好且具有实际应用价值的重金属吸附剂。  相似文献   

10.
为处理含磷废水和实现农业废弃物的资源化利用,将小麦秸秆制成生物炭,通过MgCl2溶液对其进行浸渍改性,探究改性生物炭对水中磷酸盐的吸附特性。结果表明:热解温度为600℃,0.1 mol/L MgCl2溶液改性得到的小麦秸秆生物炭(WS-0.1Mg-600)在pH=7、初始磷酸盐浓度为10 mg/L时,对磷酸盐吸附效果最好;WS-Mg-600投加量为1.25 g/L时,对磷酸盐吸附量为(4.02±0.46)mg/g;WS-Mg-600吸附磷酸盐最佳pH为10。吸附过程符合拟二级动力学方程以及Langmuir模型,表明该吸附过程是以化学吸附为主,并为单层吸附。  相似文献   

11.
制备了高锰酸钾改性的生物炭吸附材料,并研究其对于重金属离子Cu~(2+)的吸附效果。扫描电镜、X荧光光谱及X射线衍射分析结果表明,氧化锰颗粒存在生物炭的表面,从而增加了吸附效果。高锰酸钾改性生物炭对铜离子的最大吸附量为97.38mg/g,远大于普通生物炭的26.21mg/g。为了使生物炭从水中分离,制备了磁性生物炭材料,其对铜离子的最大吸附量可达到96.25mg/g,说明磁化过程对吸附材料的吸附效果影响较小。  相似文献   

12.
采用浓硫酸、浓硝酸、氨水、连二硫酸钠对桉木生物炭进行改性,制备改性桉木生物炭(ABC),对其进行了表征,并进行了对水中Cr(VI)的静态吸附实验。结果表明,桉木生物炭经改性后氮元素含量提高,氨基官能团数量增多,表面形态发生变化,比表面积和孔径降低。ABC的吸附量随初始Cr(VI)的含量和温度增大而增大,吸附在6h即可趋于平衡,吸附剂投加量为0.1g时即可取得较好的吸附效果。pH对ABC的吸附有很大的影响,在pH为1时吸附效果最好。ABC对Cr(VI)的吸附遵循准2级动力学模型和Langmuir模型,是发生在均匀表面的单层吸附,吸附过程以化学吸附为主。  相似文献   

13.
采用硝酸-高锰酸钾活化法对制备的柚子皮生物炭进行改性处理,并将其作为吸附剂探究了其对亚甲基蓝的吸附性能。通过静态吸附实验考察了亚甲基蓝溶液的pH、初始浓度、吸附时间、吸附温度、吸附剂投加量等条件对吸附效果的影响,并确定了该吸附过程的吸附动力学、吸附等温线和吸附热力学。实验结果表明,在改性生物炭投加量为0.6 g/L、pH 7、亚甲基蓝溶液浓度为100 mg/L、50℃吸附180 min的条件下,改性生物炭对亚甲基蓝的吸附容量为68.28 mg/g。通过准二级动力学方程和Freundlich方程更好的描述了该吸附过程,同时吸附热力学表明该吸附过程是一个自发吸热过程。  相似文献   

14.
《广东化工》2021,48(6)
采用酸碱、MgCl_2/FeCl_3混合溶液两种方法对椰壳生物炭进行改性,设置不同盐度、温度、pH、腐殖酸、反应时间等理化条件,研究改性椰壳生物炭吸附苯酚的效应,并进行吸附动力学研究。结果表明,两种改性椰壳生物炭对水体中苯酚的吸附效果均比未改性好,吸附速率更快。盐度和温度升高均可促进生物炭对水体中苯酚的吸附;pH在2~11范围内变化,生物炭对苯酚的吸附量先增后降;腐殖酸对吸附影响不大。改性生物炭吸附苯酚废水的最佳理化条件为:盐度5%,温度30℃,pH为酸性或中性。吸附动力学分析结果表明伪二级动力学模型能更好拟合改性椰壳生物炭对苯酚的吸附。  相似文献   

15.
改性玉米芯生物炭对废水中铜和氨氮的吸附   总被引:1,自引:0,他引:1  
用KMnO_4改性玉米芯生物炭,并用改性生物炭吸附水中的Cu~(2+)和氨氮。结果表明:改性后,生物炭中的—OH基团数量增多且其表面有新生态MnO_2生成,吸附能力增强;生物炭吸附Cu~(2+)、氨氮的最佳pH为7;共存Na~+不影响生物炭对Cu~(2+)的吸附,但显著影响对氨氮的吸附。生物炭对Cu~(2+)、氨氮的吸附分别遵循准二级、一级动力学模型。Freundlich模型能更好地模拟生物炭对Cu~(2+)的吸附行为,Langmuir模型能更好地模拟生物炭对氨氮的吸附行为。  相似文献   

16.
以污泥生物炭作吸附剂处理水中Cr(Ⅵ),研究了共存腐殖酸对生物炭吸附性能影响。结果表明,腐殖酸能显著促进生物炭对Cr(Ⅵ)的吸附,大幅提高吸附量以及缩短吸附平衡时间,生物炭吸附过程符合准二级动力学模型。在溶液初始pH 4.0,生物炭浓度20 g/L,Cr(Ⅵ)初始浓度在50~800 mg/L范围下,Langmuir模型比Freundlich模型更好地描述等温吸附行为。加入腐殖酸(20 mg/L)后,拟合得到的理论饱和吸附量达10.10 mg/g,较未加入腐殖酸的吸附量5.56 mg/g提高近1倍。在pH 2.0~8.0范围内,吸附量随溶液初始pH值升高而减小。腐殖酸浓度上升,生物炭吸附能力进一步提高。红外光谱显示,生物炭表面的羟基、羧基、酯基、芳香环上C-H和环状结构上的C-C等化学活性官能团与Cr(Ⅵ)的吸附有关。结合XPS分析结果,推断腐殖酸共存促进生物炭吸附的机制是:腐殖酸提高了Cr(Ⅵ)在生物炭表面聚集浓度,有利于生物炭对Cr(Ⅵ)的直接吸附和还原,而腐殖酸本身具有的吸附能力增加了对溶液中Cr(Ⅵ)和Cr(Ⅲ)的去除。  相似文献   

17.
以鸡粪和玉米芯的混合物为原料,制备热解生物炭前驱体(BPC),并用尿素对其水热改性,得到水热改性热解生物炭(HMPC),研究了HMPC对废水中Cr(Ⅵ)和甲基橙(MO)的吸附性能。结果表明,在温度为25℃,Cr(Ⅵ)、MO溶液初始pH分别为2.0、6.5,搅拌速率为150 r/min,HMPC投加量为1 g/L的条件下,对初始质量浓度为100 mg/L的Cr(Ⅵ)、MO的吸附量分别为56.26、73.31 mg/g。HMPC对Cr(Ⅵ)和MO的吸附较好地遵循准二级动力学模型。Langmuir模型更好地拟合HMPC对Cr(Ⅵ)和MO的吸附行为。  相似文献   

18.
《应用化工》2022,(7):1850-1854
以油菜秸秆为原料,通过厌氧热裂解和磁性明胶改性制得磁性明胶改性生物炭GXBC,并用于双氯芬酸钠(DFC)的去除。结果表明,改性后的材料对DFC拥有优异的吸附能力,在pH=5,初始浓度15 mg/L,t=240 min达到吸附平衡,吸附量为266 mg/g。动力学和热力学拟合结果表明,GXBC对DFC的吸附是符合准二级动力学模型和Langmuir模型的自发放热化学吸附过程。  相似文献   

19.
以稻壳为原料制备生物炭,利用不同浓度的乙酸锌对稻壳炭改性,制得产物分别命名为RHC和MRHC。通过SEM、BET、XRD对制备的生物炭理化特性进行表征。分析表明,改性炭孔隙结构丰富,比表面积较大,且锌以氧化物颗粒状存在于生物炭表面。将改性前后的稻壳生物炭制成电极,测试其电化学性能。结果表明,与未改性生物炭相比,改性后的炭电极比电容大大提高,电阻显著减小,循环性能和倍率性能均有提升。MRHC-0.3(乙酸锌浓度为0.3 mol/L时的改性生物炭)比表面积为495 m2/g,孔容为0.214 cm3/g,该电极在2 A/g下充放电2000次后,其电容保持率为92.16%。将MRHC-0.3电极用于电吸附Cu2+实验,发现在0.9 V,pH为5时吸附效果最好,吸附量为9.57 mg/g。在0.9 V,pH为5,Cu2+初始质量浓度为50 mg/L时,去除率可达63.82%。  相似文献   

20.
针对水体中存在的抗生素污染现象,以小粒咖啡果壳为原料,采用限氧裂解法在500℃下制备了生物炭MCS-1,随后分别用KOH和H2SO4改性MCS-1,制得改性生物炭MCS-2和MCS-3,研究了3种生物炭对磺胺噻唑(ST)的吸附特性和吸附机理。实验结果表明:3种生物炭均具有多层级孔隙结构,与未改性生物炭MCS-1相比,MCS-2和MCS-3具有更发达的孔道结构和比表面积。3种生物炭对ST的吸附均符合准二级动力学模型和Freundlich模型,表明吸附过程主要为物理化学作用,且吸附速率主要受薄膜扩散控制。等温吸附和吸附热力学表明3种生物炭对ST的吸附是自发进行的多层吸附。在298 K时,MCS-1、MCS-2、MCS-3对ST的最大吸附量分别为0.77、1.12、0.47 mg/g;pH为2时,3种生物炭对ST的吸附量均达到最大,表明对ST的吸附适合在酸性环境下进行。碱改性后的咖啡果壳生物炭(MCS-2)对ST吸附效果较未改性的MCS-1和酸改性的MCS-3生物炭强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号