首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In a vehicular ad‐hoc network (VANET), vehicles can play an essential role in monitoring areas of a smart city by transmitting data or multimedia content of environmental circumstances like disasters or road conditions. Multimedia content communication with quality of experience (QoE) guarantees is a challenging undertaking in an environment such as that of a VANET. Indeed, a VANET is characterized by numerous varying conditions, significantly impacting its topology, quality of communication channels, and paths with respect to bandwidth, loss, and delay. This paper introduces a link efficiency and quality of experience aware routing protocol (LEQRV) to improve video streaming provisioning in urban vehicular ad‐hoc networks. LEQRV uses an enhanced greedy forwarding‐based approach to create and maintain stable high quality routes for video streaming delivery. It improves the performance of the quality of experience by increasing the achieved QoE scores and reducing the forwarding end‐to‐end delay and frame loss.  相似文献   

2.
This paper extends previous research efforts related to the simulation performance modelling and analysis of satellite communication networks. Specifically, the use of low earth orbit (LEO) satellite networks for personal communications is examined. Six different satellite constellation configurations are investigated in a packet‐switched operating environment. Performance metrics examined are the end‐to‐end packet delay and the utilization of satellite channels in the dynamic environment. Realistic and accurate models of the physical satellite network and its terrestrial transmitters require that numerous operating characteristics and assumptions be specified. These are based on proposed design requirements of commercial systems, such as Iridium. Via the use of simulation, we show the relative delay and utilization performance of differing satellite network architectures. From these simulation models, mathematical metamodels are derived for the system delays. These innovative models are used to predict the delay performance of different network architectures not previously simulated. Comparison of these metamodels with simulation results show that metamodels provide an accurate means for performance prediction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Vehicular ad hoc networks is an integral component of intelligent transportation systems and it is an important requisite for smarter cities. Network formation and deformation among the vehicles are very frequent because of the variation in speed. Furthermore, for safety applications, messages should not face any kind of delay or collision. Therefore, establishing communication between the vehicles becomes even more challenging. Position‐based routing protocols work productively in vehicular ad hoc networks. Only finding an efficient routing protocol does not solve our purport. We need to carefully examine the effect of media access control layer parameters additionally. In the event of collisions, a large number of nodes would be re‐transmitting rather than sending fresh packets. A node busy in sending the retransmitted packet is called a backlog node. With an increase in the number of collisions, number of backlog nodes also increases, which affects the delay and throughput. In this article, we present the mathematical modeling of delay and throughput with IEEE 802.11 distributed coordination function (at media access control layer) for directional‐location aided routing (D‐LAR) position based routing protocol. For performance evaluation, simulation has been done in realistic environment created with SUMO (traffic simulator) and NS‐2 (network simulator). Simulation results show the comparison between D‐LAR and location aided routing (LAR) on various metrics in terms of delay, packet delivery ratio, routing overhead, throughput, and collision probability. To validate the mathematical model, analytical results has been compared with simulation results. The results confirm that performance of D‐LAR is better than LAR in terms of increasing the throughput and reduction in routing overhead and delay.  相似文献   

4.
Guaranteeing quality of service over a multihop wireless network is difficult because end‐to‐end (ETE) delay is accumulated at each hop in a multihop flow. Recently, research has been conducted on network coding (NC) schemes as an alternative mechanism to significantly increase the utilization of valuable resources in multihop wireless networks. This paper proposes a new section‐based joint NC and scheduling scheme that can reduce ETE delay and enhance resource efficiency in a multihop wireless network. Next, this paper derives the average ETE delay of the proposed scheme and simulates a TDMA network where the proposed scheme is deployed. Finally, this paper compares the performance of the proposed scheme with that of the conventional sequential scheduling scheme. From the performance analysis and simulation results, the proposed scheme gives more delay‐ and energy‐efficient slot assignments even if the NC operation is applied, resulting in a use of fewer network resources and a reduction in ETE delay.  相似文献   

5.
Applications of video streaming and real‐time gaming, which generate large amounts of real‐time traffic in the network, are expected to gain considerable popularity in Long Term Evolution networks. Maintaining the QoS such as packet delay, packet loss ratio, median, and cell border throughput requirements in networks dominated by real time traffic, is critical. The existing dimensioning methodology does not consider QoS parameters of real‐time traffic in network dimensioning. Moreover, exhaustive and time‐consuming simulations are normally required to evaluate the performance and QoS of real‐time services. To overcome this problem, we propose an improved radio network dimensioning framework that considers the QoS of real‐time traffic in network dimensioning. In this framework, an analytical model is proposed to evaluate the capacity and performance of real‐time traffic dominant Long Term Evolution networks. The proposed framework provides a fast and accurate means of finding the trade‐off between system load, packet delay, packet loss ratio, required median, and cell border throughput. It also provides network operators with an analytical means for obtaining the minimum number of sites required by jointly considering coverage, capacity and QoS requirements. The accuracy of the proposed model is validated through simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Groups of people with mobile phones using short‐range connections such as WiFi and Bluetooth to propagate messages can be modeled as, with regard to regular absence of end‐to‐end connection, mobile social networks (MSNs), which can be exploited to offload a significant amount of mobile content from the overloaded infrastructure networks such as 3G. The study of content transmission delay for the applications of mobile content dissemination in MSNs is an important problem, because to enhance the network capacity, the traffic is offloaded at the cost of inducing longer delay. In contrast to existing works, which ignore the factors of contact duration limits and large content size, we present a contact duration aware framework to model the content dissemination process in MSNs, give an explicit expression for the average content dissemination delay, and reveals its relationship with various system parameters of content size, users’ selfishness, number of involved subscribers, infecting ratio, and so on. We apply our proposed model to real‐life traces to assess its reliability by comparing the theoretical results with measured statistics and present extensive upshots to evaluate the influence of various parameters on system performance. The results demonstrate the accuracy of our proposed framework and reveal that system parameters of content size, system infecting ratio and intragroup transmission are the most important factors to influence the content dissemination delay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Streaming video over IP networks has become increasingly popular; however, compared to traditional data traffic, video streaming places different demands on quality of service (QoS) in a network, particularly in terms of delay, delay variation, and data loss. In response to the QoS demands of video applications, network techniques have been proposed to provide QoS within a network. Unfortunately, while efficient from a network perspective, most existing solutions have not provided end‐to‐end QoS that is satisfactory to users. In this paper, packet scheduling and end‐to‐end QoS distribution schemes are proposed to address this issue. The design and implementation of the two schemes are based on the active networking paradigm. In active networks, routers can perform user‐driven computation when forwarding packets, rather than just simple storing and forwarding packets, as in traditional networks. Both schemes thus take advantage of the capability of active networks enabling routers to adapt to the content of transmitted data and the QoS requirements of video users. In other words, packet scheduling at routers considers the correlation between video characteristics, available local resources and the resulting visual quality. The proposed QoS distribution scheme performs inter‐node adaptation, dynamically adjusting local loss constraints in response to network conditions in order to satisfy the end‐to‐end loss requirements. An active network‐based simulation shows that using QoS distribution and packet scheduling together increases the probability of meeting end‐to‐end QoS requirements of networked video. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Delay tolerant networks are a class of ad hoc networks that enable data delivery even in the absence of end‐to‐end connectivity between nodes, which is the basic assumption for routing in ad hoc networks. Nodes in these networks work on store‐carry and forward paradigm. In addition, such networks make use of message replication as a strategy to increase the possibility of messages reaching their destination. As contact opportunities are usually of short duration, it is important to prioritize scheduling of messages. Message replication may also lead to buffer congestion. Hence, buffer management is an important issue that greatly affects the performance of routing protocols in delay tolerant networks. In this paper, Spray and Wait routing protocol, which is a popular controlled replication‐based protocol for delay tolerant networks, has been enhanced using a new fuzzy‐based buffer management strategy Enhanced Fuzzy Spray and Wait Routing, with the aim to achieve increased delivery ratio and reduced overhead ratio. It aggregates three important message properties namely number of replicas of a message, its size, and remaining time‐to‐live, using fuzzy logic to determine the message priority, which denotes its importance with respect to other messages stored in a node's buffer. It then intelligently selects messages to schedule when a contact opportunity occurs. Because determination of number of replicas of a message in the network is a difficult task, a new method for estimation of the same has been proposed. Simulation results show improved performance of enhanced fuzzy spray and wait routing in terms of delivery ratio and resource consumption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes a mechanism for the congestion control for video transmission over universal mobile telecommunications system (UMTS). Our scheme is applied when the mobile user experiences real‐time multimedia content and adopts the theory of a widely accepted rate control method in wired networks, namely equation‐based rate control. In this approach, the transmission rate of the multimedia data is determined as a function of the packet loss rate, the round trip time and the packet size and the server explicitly adjusts its sending rate as a function of these parameters. Furthermore, we examine the performance of the UMTS for real‐time video transmission using real‐time protocols. Through a number of experiments, we measure performance parameters such as end‐to‐end delay, delay in radio access network, delay jitter and throughput in the wireless link. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Burst packet loss is a common problem over wired and wireless networks and leads to a significant reduction in the performance of packet‐level forward error correction (FEC) schemes used to recover packet losses during transmission. Traditional FEC interleaving methods adopt the sequential coding‐interleaved transmission (SCIT) process to encode the FEC packets sequentially and reorder the packet transmission sequence. Consequently, the burst loss effect can be mitigated at the expense of an increased end‐to‐end delay. Alternatively, the reversed interleaving scheme, namely, interleaved coding‐sequential transmission (ICST), performs FEC coding in an interleaved manner and transmits the packets sequentially based on their generation order in the application. In this study, the analytical FEC model is constructed to evaluate the performance of the SCIT and ICST schemes. From the analysis results, it can be observed that the interleaving delay of ICST FEC is reduced by transmitting the source packets immediately as they arrive from the application. Accordingly, an Enhanced ICST scheme is further proposed to trade the saved interleaving time for a greater interleaving capacity, and the corresponding packet loss rate can be minimized under a given delay constraint. The simulation results show that the Enhanced ICST scheme achieves a lower packet loss rate and a higher peak signal‐to‐noise‐ratio than the traditional SCIT and ICST schemes for video streaming applications.  相似文献   

11.
In this paper, we address various aspects of packet data transmission in terrestrial trunked radio (TETRA) networks giving particular emphasis on the performance of applications transmitting small messages between a number of radio terminals and a fixed server. The utilization of such applications is constantly increasing in public safety networks and so does the need to dimension and configure TETRA networks to meet their reliability, delay and loss requirements. We present simulation results for a variety of practical scenarios such as loading the packet data channel (PDCH) with different mobile station (MS) populations engaged in transmitting packet data (PD) at various rates. We quantify key performance indicators of the PDCH such as packet delay and packet loss rate. Furthermore, we provide an in-depth analysis of the impact of non-PD MS population—i.e., the loading of main control channel (MCCH)—on the average packet delay. Our results provide an insight of how network loading parameters interact with the protocol performance and may help in dimensioning and planning TETRA networks, and in particular, in determining the number of PD terminals that can be supported in a cell for a given traffic profile and QoS requirements.  相似文献   

12.
Traffic management is a highly beneficial mechanism for satisfying quality‐of‐service requirements and overcoming the resource scarcity problems in networks. This paper introduces an optimal connection admission control mechanism to decrease the packet loss ratio and end‐to‐end delay in cognitive radio sensor networks (CRSNs). This mechanism admits data flows based on the value of information sent by the sensor nodes, the network state, and the estimated required resources of the data flows. The number of required channels of each data flow is estimated using a proposed formula that is inspired by a graph coloring approach. The proposed admission control mechanism is formulated as a semi‐Markov decision process and a linear programming problem is derived to obtain the optimal admission control policy for obtaining the maximum reward. Simulation results demonstrate that the proposed mechanism outperforms a recently proposed admission control mechanism in CRSNs.  相似文献   

13.
Nowadays, peer‐to‐peer network plays a significant role in data transfer and communication. The past few years have witnessed considerable growth in this area because of its inherent advantages. Peer‐to‐peer live streaming has a significant impact on video transmission over the Internet. Major factors that influence the performance of P2P live streaming are overlay construction and scheduling strategies. Although, a large number of scheduling schemes are developed but none of them is comprehensive enough to provide solutions to live streaming issues. These suffer from substantial delay and low video quality at the receiver side. In this paper, a new start‐up–based selection procedure and slack time–based scheduling scheme is proposed. The start‐up selection procedure defines the start‐up buffer location for new peer, and the scheduling scheme selects both the chunk and peers. The proposed scheduling scheme uses both push and pull priority–based strategies. The simulation results of the proposed approach demonstrates significant improvement in both the network performance and video quality at the receiver side. It is observed that playback delay, startup delay, and end‐to‐end delay in the network are reduced and quality of the video at receiver side is improved as the distortion and frame loss ratio is decreased.  相似文献   

14.
A smart opportunistic environment is a physical space, which allows the smart physical objects to communicate in the presence of disruption in connectivity. Because, the objects in such an environment are buffer constrained, some of the objects will not participate in data forwarding, when there is scarcity of storage (buffer) space. In this paper, we focus on such selfish behavior of objects triggered by space constraints in a smart opportunistic environment. We propose a novel data forwarding algorithm, selfishness and buffer‐aware routing (SBR), in which a node is chosen as a relay, based on its capability, which is a function of its available buffer space and past encounter history (delivery predictability) with the destination. SBR can efficiently utilize the limited buffer space in a node with a buffer management scheme, WSD. It can also detect space constraint driven selfish behavior of nodes and resolve it using a reputation‐based technique, MSD. We have conducted simulation using both synthetic and real‐world traces for evaluating our proposed SBR algorithm. For analyzing the performance of the algorithm in real‐time, a smart vehicular test‐bed is developed. Simulation results and test‐bed implementation show that our algorithm performs better in terms of higher delivery ratio, lower overhead ratio, and lower delivery delay, compared with existing opportunistic data forwarding algorithms.  相似文献   

15.
Traditional voice and video‐oriented networks such as the cellular and satellite networks are being increasingly used to carry data traffic. We endeavour to compare the downlink broadcast performance of the two architectures against each other on the basis of energy consumption, end‐to‐end delay and maximum stable throughput. The architectures are modelled as systems of Geo/G/1 queues. Queuing theory arguments and then sample‐path based comparisons are used to show that the satellite architecture while being more energy‐efficient has a higher delay and a lower maximum throughput. The variation of energy and delay with the total number of receiver nodes is also studied. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In smart city scenarios, data collected by sensors are required to be conveyed to central controllers for processing. Thus, efficient data collection mechanisms considering the urban environment characteristics should take place. To that end, the data mules approach is proved to be efficient. However, being applied to urban environment leads to high data delivery latency due to the characteristics of this environment. Motivated by the need to reduce the collection latency of such an approach, we propose to provide each road segment with a data mule to create a process of distributed data collection. Our scheme leverages opportunistic inter‐vehicular communications for assigning the mule role to adequate vehicles. The simulation in realistic mobility settings reveals that our scheme can provide more than 80% of the area of interest with data mules in less than 1 minute. In addition, the data collection latency can be reduced from 24 hours to few minutes.  相似文献   

17.
Internet of Things (IoT) offers various types of application services in different domains, such as “smart infrastructure, health‐care, critical infrastructure, and intelligent transportation system.” The name edge computing signifies a corner or edge in a network at which traffic enters or exits from the network. In edge computing, the data analysis task happens very close to the IoT smart sensors and devices. Edge computing can also speed up the analysis process, which allows decision makers to take action within a short duration of time. However, edge‐based IoT environment has several security and privacy issues similar to those for the cloud‐based IoT environment. Various types of attacks, such as “replay, man‐in‐the middle, impersonation, password guessing, routing attack, and other denial of service attacks” may be possible in edge‐based IoT environment. The routing attacker nodes have the capability to deviate and disrupt the normal flow of traffic. These malicious nodes do not send packets (messages) to the edge node and only send packets to its neighbor collaborator attacker nodes. Therefore, in the presence of such kind of routing attack, edge node does not get the information or sometimes it gets the partial information. This further affects the overall performance of communication of edge‐based IoT environment. In the presence of such an attack, the “throughput of the network” decreases, “end‐to‐end delay” increases, “packet delivery ratio” decreases, and other parameters also get affected. Consequently, it is important to provide solution for such kind of attack. In this paper, we design an intrusion detection scheme for the detection of routing attack in edge‐based IoT environment called as RAD‐EI. We simulate RAD‐EI using the widely used “NS2 simulator” to measure different network parameters. Furthermore, we provide the security analysis of RAD‐EI to prove its resilience against routing attacks. RAD‐EI accomplishes around 95.0% “detection rate” and 1.23% “false positive rate” that are notably better than other related existing schemes. In addition, RAD‐EI is efficient in terms of computation and communication costs. As a result, RAD‐EI is a good match for some critical and sensitive applications, such as smart security and surveillance system.  相似文献   

18.
Wireless sensor networks (WSNs) have significant potential in many application domains, ranging from precision agriculture and animal welfare to home and office automation. Although sensor network deployments have only begun to appear, the industry still awaits the maturing of this technology to realize its full benefits. The main constraints to large‐scale commercial adoption of WSN have been the lack of available network management and control tools, such as for determining the degree of data aggregation prior to transforming it into useful information, localizing the sensors accurately so that timely emergency actions can be taken at an exact location, routing data by reducing sensor energy consumption, and scheduling data packets so that data are sent according to their priority and fairness. Moreover, to the best of our knowledge, no integrated network management solution comprising efficient localization, data scheduling, routing, and data aggregation approaches exists in the literature for a large‐scale WSN. Thus, we introduce an integrated network management framework comprising sensor localization, routing, data scheduling, and data aggregation for a large‐scale WSN. Experimental results show that the proposed framework outperforms an existing approach that comprises only localization and routing protocols in terms of localization energy consumption, localization error, end‐to‐end delay, packet loss ratio, and network energy consumption. Moreover, the proposed WSN management framework has potential in building a future “Internet of Things”. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Object tracking is widely referred as one of the most interesting applications of wireless sensor networks (WSNs). This application is able to detect and track objects and report information about these objects to a central base station. One of the major drawbacks in the current research in WSNs is the quality of the data reporting where the major research focus is dedicated to localization of objects; however, few of these works were concentrated on the data reporting. An efficient data reporting algorithm for object tracking in WSNs is proposed in this paper. The main objective of this paper is to enhance the WSN lifetime by achieving both minimum energy and balancing such consumption in sensor nodes during reporting operation. Furthermore, in our model, the enhancement of network reliability is considered. Finally, it reduces the effects of congestion by sufficiently utilizing the under loaded nodes to improve the network throughput. This paper formulates the object tracking problem in large‐scale WSN into 0/1 integer linear programming problem, and then proposes a reliable energy balance traffic aware approach to solve the optimization problem. From the obtained simulation results, the proposed solution has proved to be able to enhance the network performance in network lifetime, throughput, end‐to‐end delay, energy balance, and complexity for both homogeneous and heterogeneous networks.  相似文献   

20.
Fifth generation (5G) slicing is an emerging technology for software‐defined networking/network function virtualization–enabled mobile networks. Improving the utilization and throughput to meet the quality of service (QoS) requirements of 5G slicing is very important for the operators of mobile networks. With growing data traffic from different applications of numerous smart mobile devices having several QoS requirements, we expect networks to face problems of congestion and overload that prevent the effective functioning of a radio access network (RAN). This paper proposes a more effective packet‐based scheduling scheme for data traffic by 5G slicing with two operation modes for improving the resource utilization of 5G cloud RAN and providing an efficient isolation of the 5G slices. These two operation modes are referred to as static sharing resource (SSR) scheme and dynamic sharing resources (DSR) scheme. The SSR scheme is a modified version of an existing method. The goal of this approach is to reallocate the shared available resources of 5G network fairly and maximize the utilization of bandwidth while protecting a 5G slice from overwhelming other 5G slices. Throughput and delays of the system model are also discussed to show its performance limits. On the basis of the simulation outcomes, we observed that the proposed DSR scheme outperforms the SSR scheme in terms of provided delay and throughput. In addition, the token bucket parameters together with the assigned capacity weight for each slice can be selected and configured based on the required QoS. Finally, a good estimate for the maximum delay bounds of the slices is provided by the derived theoretical delay bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号