首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, we provide a stochastic adaptive sampling strategy for mobile sensor networks to estimate scalar fields over surveillance regions using kernel regression, which does not require a priori statistical knowledge of the field. Our approach builds on a Markov Chain Monte Carlo (MCMC) algorithm, viz., the fastest mixing Markov chain under a quantized finite state space, for generating the optimal sampling probability distribution asymptotically. The proposed adaptive sampling algorithm for multiple mobile sensors is numerically evaluated under scalar fields. The comparison simulation study with a random walk benchmark strategy demonstrates the excellent performance of the proposed scheme.  相似文献   

2.
针对传统采样规划算法因随机性强,在动态环境中重规划时路径质量差,抖动严重,实时优化效果不明显等问题,提出了一种利用反向生长最优快速搜索随机树的实时采样重规划算法DRT-RRT*(Dynamic Real-Time RRT*)。引入基于三角不等式的剪枝策略对路径进行平滑处理以减少路径拐点;提出了组合采样策略和局部终点跳动策略,将优化目标由全局路径聚焦于机器人当前位置至最近路径拐点的局部路径段,实时对执行路径段进行修正,进而提高路径质量的稳定性;在路径重规划时仅对受影响的随机树枝进行修剪,并在随机树重新生长时引入了目标偏置采样策略,与组合采样策略共同作用,提高路径搜索速率和稳定程度;将DRT-RRT*与RRT*和增加了三角不等式剪枝策略的RRT*-Pruning进行仿真对比分析,实验结果验证了DRT-RRT*重规划的高效性和稳定性。  相似文献   

3.
A recent concern in marine robotics is to consider the deployment of fleets of autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs). Multiple vehicles with heterogeneous capabilities have several advantages over a single vehicle system, and in particular the potential to accomplish tasks faster and better than a single vehicle. This paper addresses in this context the problem of underwater targets localization. A systematic and exhaustive coverage strategy is not efficient in terms of exploration time: it can be improved by making the AUVs share their information to cooperate, and optimize their motions according to the state of their knowledge on the target localization. We present techniques to build environment representations on the basis of which adaptive exploration strategies can be defined, and define an architecture that allows information sharing and cooperation between the AUVs. Simulations are carried out to evaluate the proposed architecture and the adaptive exploration strategies.  相似文献   

4.
Surface metrology systems are increasingly used for inspecting dimensional quality in manufacturing. The gauge of these measurement systems is often mounted as an end-effector on robotic systems to exploit the robots’ high degrees of freedom to reposition the gauge to different viewpoints. With this repositioning flexibility, a planning methodology becomes necessary in order to carefully plan the viewpoints, as well as the optimal sequence and quickest path to move the gauge to each viewpoint. This paper investigates coverage path planning for robotic single-sided dimensional inspection of free-form surfaces. Reviewing existing feasible state-of-the-art methodologies to solve this problem led to identifying an unexplored opportunity to improve the coverage path planning, specifically by replacing random viewpoint sampling strategy. This study reveals that a non-random targetted viewpoint sampling strategy significantly contributes to solution quality of the resulting planned coverage path. By deploying optimisation during the viewpoint sampling, an optimal set of admissible viewpoints can be obtained, which consequently significantly shortens the cycle-time for the inspection task. Results that evaluate the proposed viewpoint sampling strategy for two industrial sheet metal parts, as well as a comparison with the state-of-the-art are presented. The results show up to 23.8% reduction in cycle-time for the inspection task when using targetted viewpoints sampling.  相似文献   

5.
针对无人车在复杂环境中进行全局路径规划时存在的盲目搜索、节点冗余、路径不光滑及不安全等问题,提出一种基于快速扩展随机树(RRT,rapidly-exploring random tree)的综合改进路径规划算法;首先引入目标动态概率采样策略和人工势场引导随机树扩展机制;其次根据汽车运动学模型,对规划的路径进行转角约束和碰撞检测,保证路径的安全性;然后引入Reeds-Sheep曲线用于直接与目标位姿进行连接,避免多余的位姿调整;最后对路径进行剪枝和平滑处理,得到一条更短更光滑的路径;在实验部分,针对不同仿真环境,以规划时间、路径长度和节点数目作为评价指标,对比了RRT算法、RRT*算法和文章算法的路径规划效果;实验结果显示,文章算法相比于RRT算法和RRT*算法,节点数目分别减少了58.94%和85.22%,规划时间分别缩短了61.20%和79.23%,且路径长度相比于RRT算法缩短了17.26%,并和RRT*算法规划的最优路径长度相近。  相似文献   

6.
Autonomous underwater vehicles (AUVs) have gained more interest in recent years for military as well as civilian applications. One potential application of AUVs is for the purpose of undersea surveillance. As research into undersea surveillance using AUVs progresses, issues arise as to how an AUV acquires, acts on, and shares information about the undersea battle space. These issues naturally touch on aspects of vehicle autonomy and underwater communications, and need to be resolved through a spiral development process that includes at sea experimentation. This paper presents a recent AUV implementation for active anti-submarine warfare tested at sea in the summer of 2010. On-board signal processing capabilities and an adaptive behavior are discussed in both a simulation and experimental context. The implications for underwater surveillance using AUVs are discussed.  相似文献   

7.
为了空中加油能面向多架无人机,本文提出了空中加油的三维最优会合航路规划算法.多架无人机分布在不同区域,需要加油机沿预定的规划航路飞行会合,以完成空中加油任务.由于加油机可同时服务的受油机数量有限,需要寻找最优分配策略将无人机预分配至不同加油区域与之会合.本文首先根据加、受油机在各加油区域的最短会合时间,将最优分配问题建模为整数线性规划问题,求解得到加油机与各无人机的最优会合点.随后,本文提出了三维空间Dubins路径延长算法,保证各无人机按照分配结果与加油机同时到达会合点.最后,分别针对二维和三维多架无人机空中加油任务进行仿真.仿真结果表明本文提出的最优会合航路规划算法得到的Dubins航路,可以保证空中加油会合任务在最短时间内完成.  相似文献   

8.
为了使水环境监测无人艇在监测和采集水样时能有效躲避静态障碍物,且以最优或接近最优的路径行进,提出了一种变步长和变视野的自适应人工鱼群算法与改进遗传算法混合的策略,在人工鱼完成觅食、追尾、聚群等行为后,进行遗传算法的操作。通过指数函数型衰减函数使算法前期视野和步长很大,后期视野和步长很小,提高算法的运行效率和精确性;在基本遗传算法中加入精英选择策略和保护、淘汰算子,得到全局最优解。仿真结果表明,混合算法有效克服了单一算法容易局部收敛的缺点,收敛速度快,能有效得到最优路径,计算精度高。  相似文献   

9.
考虑网络流量的最优路径求解模型和算法   总被引:1,自引:0,他引:1  
本文旨在解决交通网络中群体车辆的路径选择问题.即为每个车辆寻求最优行驶路径.使之在起迄点间的旅行时间最短.考虑到网络流量对路段旅行时间的影响,先进行流量分配,再同时为各个车辆寻求最短路径.为此,首先给出了考虑流量影响的网络模型,然后建立了基于路段的用于流量分配的变分不等式模型.该模型的解给出了车辆按照最优路径行驶时分配到各路段上的车辆数目.由于该模型是完全基于路段的,从而克服了基于路径方法必须进行路径穷举的缺陷.最后给出了最优路径选择算法,并证明了算法的正确性.本文给出的模型和算法适用于交通畅通、交通拥挤等各种情况.实验结果表明本文提出的模型和算法是非常有效的.  相似文献   

10.
路径规划在室内机器人的应用中有着无可比拟的作用。为了提高路径规划算法收敛的速度,综合时间消耗和路径质量方面考虑,针对RRT*(渐进最优快速扩展随机树)算法的局限性,提出一种改进的RRT*算法。该算法采用目的性的设置采样点代替原算法中的随机高斯采样和引进人工势场与避障策略结合的思想,设置目标偏向性,引导随机树生长方向,然后利用曼哈顿距离代替欧几里得距离作为代价估值函数,防止陷入极小值以及一定程度上减小算法时间损耗。实验表明,该方法可有效平衡算法收敛时间与最佳路径的可靠性。  相似文献   

11.
This study describes a method for detecting and tracking ocean fronts using multiple autonomous underwater vehicles (AUVs). Multiple vehicles, equally spaced along the expected frontal boundary, complete near parallel transects orthogonal to the front. Two different techniques are used to determine the location of the front crossing from each individual vehicle transect. The first technique uses lateral gradients to detect when a change in the observed water property occurs. The second technique uses a measure of the vertical temperature structure over a single dive to detect when the vehicle is in upwelling water. Adaptive control of the vehicles ensure they remain perpendicular to the estimated front boundary as it evolves over time. This method was demonstrated in several experiment periods totaling weeks, in and around Monterey Bay, CA, in May and June of 2017. We compare the two front detection methods, a lateral gradient front detector and an upwelling front detector using the Vertical Temperature Homogeneity Index. We introduce two metrics to evaluate the adaptive control techniques presented. We show the capability of this method for repeated sampling across a dynamic ocean front using a fleet of three types of platforms: short‐range Iver AUVs, Tethys‐class long‐range AUVs, and Seagliders. This method extends to tracking gradients of different properties using a variety of vehicles.  相似文献   

12.
The cooperative path following problem of multiple underactuated autonomous underwater vehicles (AUVs) involves two tasks. The first one is to force each AUV to converge to the desired parameterized path. The second one is to satisfy the requirement of a cooperative behavior along the paths. In this paper, both of the tasks have been further studied. For the first one, a simplified path following controller is proposed by incorporating the dynamic surface control (DSC) technique to avoid the calculation of derivatives of virtual control signals. Besides, in order to handle the uncertain dynamics, a new type of neural network (NN) adaptive controller is derived, and then an NN based energy‐efficient path following controller is firstly proposed, which consists of an adaptive neural controller dominating in the neural active region and an extra robust controller working outside the neural active region. For the second one, in order to reduce the amount of communications between multiple AUVs, a distributed estimator for the reference common speed is firstly proposed as determined by the communications topology adopted, which means the global knowledge of the reference speed is relaxed for the problem of cooperative path following. The overall algorithm ensures that all the signals in the closed‐loop system are globally uniformly ultimately bounded (GUUB) and the output of the system converges to a small neighborhood of the reference trajectory by properly choosing the design parameters. Simulation results validate the performance and robustness of the proposed strategy.  相似文献   

13.
Under sampling of the coastal oceans remains a persistent problem for standard oceano-graphic measurement practice wherein an instrument package is tethered to a research vessel. The overhead costs associated with operating a large research vessel impose a strict minimum on the cost of data collected. Owing to the overheads, significant improvements in sampling technology on the tethered platform can only produce modest gains in the cost effectiveness. In contrast, untethered vehicles if operated simultaneously have the potential to increase cost effectiveness significantly by distributing the overhead costs over several sampling platforms. Furthermore, synoptic and pseudosynoptic data can be collected with multiple autonomous underwater vehicles (AUVs), thereby providing the type of information critical to dynamic process modeling unattainable with non-synoptic data. While the goal of simultaneous multiple-vehicle operation has been espoused over the last few years, AUV technology and practice have until recently been too immature to realize that potential. Recently, Florida Atlantic University (FAU) has developed a new series of modular AUVs with the express purpose of supporting multiple sensors and multiple-vehicle operation. This series of vehicle is called the Ocean Explorer of which three have been produced so far. This paper will explore some of the associated navigation, tracking, control and deployment problems associated with multiple-vehicle operation in coastal applications. In addition, the characteristics of the component level intelligent distributed control system, integrated data logger and vehicle control system will be discussed. In particular this paper will discuss how FAU has applied the concepts of elastic constraint propagation and the symmetric fuzzy decision-making model to AUV control systems. Some results of early experiments in synoptic data collection with a conductivity, temperature and depth (CTD) sensor using multiple AUVs for the determination of horizontal structure will be described.  相似文献   

14.
The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far from being globally optimal. This paper proposes a new framework for tool path optimization. It views a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool path can be generated by finding the function that minimizes certain energy functional and different objectives can be considered simultaneously. We use the framework to plan globally optimal tool path with respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and optimal tool path are respectively derived, and the path topology is studied too. Experimental results are given to show effectiveness of the proposed methods.  相似文献   

15.
针对冗余机械臂的冗余特性与相关RRT*算法在规划机械臂末端路径的应用中存在的搜索效率较低、收敛性不稳定以及没有充分考虑到机械臂末端几何构型与自身运动特性对路径规划影响的问题,提出一种改进策略。首先,引入一种基于根尾节点连线夹角的采样点选择方式,并设置目标逼近区域。根据连续采样成功次数动态选择改进采样与随机采样。接着,将双树扩展策略与上述方法相结合。最后,将初始可行路径进行二次重连得到最终的优化路径。通过验证,改进双树RRT*方法能够有效地提升搜索效率、收敛性以及路径的优越性。虚拟碰撞体与胶囊碰撞体的引入也能较好地应对机械臂末端结构与运动特性带来的影响。使用Mujoco物理仿真引擎进行机械臂运动验证,证明该策略可以为冗余机械臂末端规划出一条较优的可行路径。  相似文献   

16.
任丽娜  路鹏伟  刘福才 《控制与决策》2019,34(11):2438-2444
电动汽车充电导航便于用户合理选择充电站,降低用户自身的时间成本和经济成本,缓解配电网端的负荷压力.在电网分时电价的基础上,考虑电动汽车充电路径的选择与车主的驾驶行为密切相关,通过对电动汽车的负荷设备分类建模,根据不同设备类型的重要程度及用户的电动汽车实际工况和地形因素,利用遗传算法分析最佳出行路径,提出以时间成本与经济成本之和最优为目标,引导用户驾驶行为的充电导航策略.在20kmtimes10km含3个充电站的区域内,通过3种不同充电导航策略仿真结果对比,验证所提出的导航策略的可行性和有效性.  相似文献   

17.
Nowadays, autonomous underwater vehicle (AUV) is playing an important role in human society in different applications such as inspection of underwater structures (dams, bridges). It has been desired to develop AUVs that can work in a sea with a long period of time for the purpose of retrieving methane hydrate, or rare metal, and so on. To achieve such AUVs, the automatic recharging capability of AUVs under the sea is indispensable and it requires AUVs to dock itself to recharging station autonomously. Therefore, we have developed a stereo-vision-based docking methodology for underwater battery recharging to enable the AUV to continue operations without returning surface vehicle for recharging. Since underwater battery recharging units are supposed to be installed in a deep sea, the deep-sea docking experiments cannot avoid turbidity and low-light environment. In this study, the proposed system with a newly designed active—meaning self-lighting—3D marker has been developed to improve the visibility of the marker from an underwater vehicle, especially in turbid water. Experiments to verify the robustness of the proposed docking approach have been conducted in a simulated pool where the lighting conditions change from day to night. Furthermore, sea docking experiment has also been executed to verify the practicality of the active marker. The experimental results have confirmed the effectiveness of the proposed docking system against turbidity and illumination variation.  相似文献   

18.
In this paper, we develop nonlinear distributed or semi‐decentralized cooperative control schemes for a team of heterogeneous autonomous underwater vehicles (AUVs). The objective is to have the network of AUVs follow a desired trajectory, while the agents maintain a desired formation when there is a virtual leader whose position information is only available and known to a very small subset of the agents. The virtual leader does not receive any feedback and information from the other agents and the agents only communicate with their nearest neighboring agents. It is assumed that the model parameters associated with each vehicle/agent is different, although the order of the agents is the same. The developed and proposed nonlinear distributed cooperative control schemes are based on the dynamic surface control methodology for a network of heterogeneous autonomous vehicles with uncertainties. The development and investigation of the dynamic surface control methodology for a team of cooperative heterogenous multi‐agent nonlinear systems is accomplished for the first time in the literature. Simulation results corresponding to a team of six AUVs are provided to demonstrate and illustrate the advantages and superiority of our proposed cooperative control strategies as compared to the methods that are available in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
针对应用快速搜索随机树(RRT)算法进行机械臂路径规划时,存在采样区域大、有效区域小、路径冗余节点多、剪枝时间长等问题,提出一种基于分区动态采样策略和重复区域节点拒绝机制的高效RRT路径规划算法PS-RRT(partitioned sampling RRT)。首先,通过PS-RRT快速规划机械臂末端初始路径;其次,分段检测机械臂跟随该路径时的连杆碰撞情况,对碰撞路段进行带臂形约束的第二次规划;最后,将初始路径和第二次规划的路径拼接后进行路径裁剪。将所提方法在多种场景中进行仿真验证,结果表明:基于PS-RRT算法的机械臂避障路径规划策略使得无效节点数大幅减少,可高效规划出机械臂的无碰路径,验证了算法的可行性。  相似文献   

20.
Recent advances in Autonomous Underwater Vehicle (AUV) technology have facilitated the collection of oceanographic data at a fraction of the cost of ship‐based sampling methods. Unlike oceanographic data collection in the deep ocean, operation of AUVs in coastal regions exposes them to the risk of collision with ships and land. Such concerns are particularly prominent for slow‐moving AUVs since ocean current magnitudes are often strong enough to alter the planned path significantly. Prior work using predictive ocean currents relies upon deterministic outcomes, which do not account for the uncertainty in the ocean current predictions themselves. To improve the safety and reliability of AUV operation in coastal regions, we introduce two stochastic planners: (a) a Minimum Expected Risk planner and (b) a risk‐aware Markov Decision Process, both of which have the ability to utilize ocean current predictions probabilistically. We report results from extensive simulation studies in realistic ocean current fields obtained from widely used regional ocean models. Our simulations show that the proposed planners have lower collision risk than state‐of‐the‐art methods. We present additional results from field experiments where ocean current predictions were used to plan the paths of two Slocum gliders. Field trials indicate the practical usefulness of our techniques over long‐term deployments, showing them to be ideal for AUV operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号