首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 182 毫秒
1.
微波辐射乳液聚合制备磁性高分子微球   总被引:1,自引:0,他引:1  
用化学共沉淀法制备了Fe3O4纳米粒子,并用油酸和十二烷基硫酸钠对Fe3O4纳米粒子进行表面修饰,得到了稳定的水分散性纳米Fe3O4磁流体。在Fe3O4磁流体存在下,以苯乙烯和丙烯酰胺为单体,采用微波辐射乳液聚合法制备了Fe3O4/聚(苯乙烯-丙烯酰胺)磁性高分子微球,表征了磁性高分子微球的形态与结构,研究了磁性高分子微球的粒径、热稳定性、磁含量与饱和磁化强度。研究发现,在选定合适的聚合条件下,通过微波辐射乳液聚合法可以制得粒径为70 nm~80 nm、磁含量为18.2%的磁性高分子微球。  相似文献   

2.
采用化学共沉淀法制备了Fe3O4纳米颗粒,以PEG-4000为表面活性剂进行表面修饰,制备了分散性良好的纳米Fe3O4磁流体.磁流体存在时,采用分散聚合法,以苯乙烯为单体制备了磁性高分子微球.TEM研究表明,Fe3O4纳米颗粒的平均粒径约为10nm,分散聚合所制备的磁性聚苯乙烯微球的平均粒径约为80nm;VSM研究表明,合成的Fe3O4纳米颗粒及磁性聚苯乙烯微球具有超顺磁性;FT-IR研究表明,Fe3O4纳米颗粒很好地包覆于聚苯乙烯中;XRD结果表明,分散聚合前后,Fe3O4纳米颗粒的晶体结构没有发生变化.  相似文献   

3.
在Fe3O4磁流体存在下进行双层表面活性剂改性,采用改进的乳液聚合法制备了以苯乙烯和丙烯酸的共聚物为壳的磁性高分子微球。在扫描电镜下观察磁性微球的粒径为250nm左右;通过红外光谱(FT-IR)、XRD、热重分析等手段表征了磁性微球的组成成分、结构的变化以及Fe3O4磁性含量。实验表明,在优化的实验条件下,可以制得磁含量高达32%的磁性复合微球。  相似文献   

4.
用微乳液聚合法制备了粒径均匀的聚苯乙烯-丙烯酸高分子微球P(St-co-AA),与共沉淀法所制纳米Fe3O4通过静电作用,使两种微球自组装成高磁含量的磁性微球[Fe3O4/P(St-co-AA)].采用XRD、TEM、SEM、IR等对样品进行表征,采用VSM对样品进行磁性能测试.结果表明P(St-co-AA)平均粒径约为70nm,表面含有羧基;所得磁粉为Fe3O4单相,平均粒径约为10nm.磁性能测试表明,当外加磁场为1.5×106/π(A/m)时,磁化强度达到饱和,饱和磁化强度为69A·m2·kg-1;自组装所制高分子磁性微球为球形,平均粒径约800nm,磁粉含量为15.8%.研究表明,pH值、搅拌等对复合磁性微球的形成有重要影响.  相似文献   

5.
采用改进化学共沉淀法制备了镝掺杂铁氧体磁流体,然后以甲基丙烯酸-2-羟基乙酯为单体,N,N′-亚甲基双丙烯酰胺为交联剂,采用光化学方法在Dy∶Fe3O4磁流体中制备了磁性聚甲基丙烯酸-2-羟基乙酯(PHEMA)微球,进而合成了含有稀土元素Tb的荧光磁性高分子微球。用振动样品磁强计(VSM)、光子相关光谱(PCS)、傅里叶变换红外光谱仪(FT-IR)、热重-差热分析(TG-DTA)、扫描电镜(SEM)和全功能荧光光谱(FLS)等技术对微球的性能进行了表征,并与文献[5]中Fe3O4/PHEMA-Tb进行了对比分析。结果表明,荧光磁性高分子微球粒径为22.8 nm,比饱和磁化强度为68.1emu/g,变异系数为3.7%,具有超顺磁性和荧光性,分散性好,呈圆球形。  相似文献   

6.
聚(苯乙烯-丙烯酸)磁性高分子微球的制备及性能   总被引:1,自引:0,他引:1  
以苯乙烯为单体、丙烯酸为功能基单体、N,N′-亚甲基双丙烯酰胺为交联剂,加入自制的纳米Fe3O4磁流体,采用分散聚合的方法制备出聚(苯乙烯-丙烯酸)磁性高分子微球。采用XRD、FT-IR、SEM、752N型分光光度计和化学滴定法,对所制得的磁性高分子微球进行了表征及性能分析,研究了交联剂N,N′-亚甲基双丙烯酰胺的加入对其性能的影响。结果表明,所制磁性微球粒径在0.7μm~2 m之间,单分散性好;交联剂对微球性能有着明显的影响,随着交联剂的增加,微球粒径变小、粒径分布变宽、表面羧基含量增加、耐酸碱性增强,最佳含量应为单体用量的4%。  相似文献   

7.
用化学共沉淀法合成了Fe3O4纳米微粒,并用双层表面活性剂对其进行表面修饰,得到了以水和乙醇为分散介质的磁流体。在磁流体的存在下,用改进的乳液聚合方法合成了Fe3O4/聚苯乙烯磁性微球。X射线衍射研究表明,Fe3O4纳米微粒的平均粒径约为10 nm;在透射电镜下观察磁性微球的粒径在140 nm左右;并用红外光谱和热失重方法表征了复合微球的化学成分及其所含Fe3O4的百分数。阐述了双层表面活性剂改性的机理,并对聚合过程中单体、磁流体及引发剂的用量的影响进行了讨论。  相似文献   

8.
Fe_3O_4/聚苯乙烯磁性复合微球的制备与应用前景   总被引:1,自引:0,他引:1  
采用改进的乳液聚合法,制备了磁性Fe3O4为核、苯乙烯和丙烯酸的共聚物为壳的磁性高分子复合微球。在透射电镜下观察磁性微球的粒径在130 nm左右;并用FT-IR、XPS和热失重方法表征了复合微球的组成成分、羧基(-COOH)的含量及所含Fe3O4的百分量。结果表明,微球的粒径分布均匀,大小可控,稳定性好,具有一定的抗溶剂性能,可长时间存放,是纳米磁性高分子聚合物网络的雏形。  相似文献   

9.
采用分散聚合法,在Fe3O4磁流体存在下,通过PVA分子单体共聚制备磁性高分子微球.用透射电镜和X射线对磁流体的形貌、粒径进行表征和衍射分析,同时借助于显微拍照和红外光谱,对磁性微球的微观形貌和化学成分进行了研究.通过对比磁性微球的磁响应性及粒径,研究了反应温度、搅拌速度、聚乙烯醇用量、盐酸用量等操作因素对磁性微球性质的影响.结果表明,在70 ℃操作温度、750 r/min的搅拌速度,5ml 9%PVA和0.5 ml 37%盐酸条件下能制备出粒径在8~44 μm之间、具有良好磁响应性、表面富含羟基和羧基等官能团的磁性聚乙烯醇微球.  相似文献   

10.
磁性高分子微球的静电自组装制备及表征   总被引:1,自引:0,他引:1  
以微乳液聚合法制取的聚(苯乙烯-丙烯酸)[P(St-co-AA)]高分子微球为模板,与部分还原法所制纳米Fe3O4,通过静电自组装制备磁性高分子微球。采用XRD、TEM、SEM、IR等对样品进行表征,采用VSM对样品进行磁性能测试。结果表明所得磁粉样品为Fe3O4单相,平均粒径为10nm。常温下磁性能测试表明:外加磁场为6 kOe时,饱和磁化强度为69 emu/g。P(St-co-AA)平均尺寸约为70 nm,表面带有羧基。自组装所制磁性高分子微球为球形,粒径约1μm,磁粉含量为30.81%。研究表明pH、搅拌等对磁性高分子微球的形成有重要影响。  相似文献   

11.
A novel route was proposed to design and construct a magnetic composite microsphere with a controllable and regular core-shell architecture, which consists of Fe3O4 nanoparticles chemical-covalently encapsulated with pH-smart poly(methacrylic acid-co-N-vinyl pyrrolidone) (P(MAA-co-NVP)) cross-linked copolymers by a surface-initiated radical dispersion polymerization approach. The multistep surface treatment was employed to improve the dispersity and surface-chemical reactivity of Fe3O4 nanoparticles, involving introduction of active -NH2 groups, coupling of 1,1-methylene bis-(4-isocyanato-cyclohexane) and immobilizing of 2,2'-azobis[2-methyl-N-(2-hydroxyethyl) propionamide]. The structure and morphological characterization were carried out by FTIR, TEM, SEM and XRD etc. The neat Fe3O4 nanoparticles take on an aggregated spherical shape with an average diameter of about 12 nm, while Fe3O4/P(MAA-co-NVP) magnetic microspheres assume regularly monodispersed spheres with a mean dimension of ca. 0.8 microm. The dimension of the microspheres is abruptly increased with increasing pH values of the media. The microspheres exhibit superparamagnetic properties. It is expected that this type of novel microspheres can be employed as a magnetic targeted and pH-sensitive drug carrier.  相似文献   

12.
Fe3O4/ 聚吡咯复合材料的制备及表征   总被引:22,自引:3,他引:19       下载免费PDF全文
以化学沉淀法制备Fe3O4 纳米粒子, 采用乙醇对Fe3O4 纳米粒子表面进行处理, 使其表面有机化, 然后通过乳液原位复合制备Fe3O4 / 聚吡咯复合材料。利用TEM, XPS, 四探针测试仪和震荡磁力计对其进行表征和检测。结果表明: 经醇处理的Fe3O4 纳米粒子的分散性得到明显改善, Fe3O4 纳米粒子被包覆在聚吡咯层内, 包覆层厚度为10 nm 左右, 复合材料具有优良的电性能和磁性能, 电导率e= 7. 69 s/ cm~13. 6 s/ cm, 饱和磁强度Ms= 12. 06 emu/ g~24. 38 emu/ g, 矫顽力Hc= 11 Oe~41 Oe。其环境稳定性明显优于纯聚吡咯。   相似文献   

13.
采用Fe3O4、N-异丙基丙烯酰胺(NIPAM)和丙烯酸(AA)制备了具有磁敏、温敏和pH敏感的多重敏性复合微球。先使用共沉淀法制备Fe3O4磁性纳米颗粒,并用油酸对其改性。继而采用种子聚合法制备P(NIPAM-co-AA)磁性微球。研究表明,在pH值为10的合成条件下,复合微球的分散性较好。采用疏水性引发剂可相对增加有机、无机相之间的亲和性。通过扫描电镜(SEM)、红外光谱(FT-IR)、动态光散射(DLS)和超导量子干涉磁强计(SQUID)等对微球进行了结构与形态表征,结果证明,复合微球形貌统一,各组分之间聚合良好。复合微球的粒径约为249 nm,对温度、pH可作出预期的响应,饱和磁化强度为40 emu/g。  相似文献   

14.
在制备聚砜-Fe3O4磁性复合超滤膜的过程中,为避免纳米Fe3O4粒子团聚,采用偶联剂包裹共沉淀法得到Fe3O4粒子,然后采用相转化法制备了聚砜-Fe3O4磁性复合超滤膜。Zeta电位仪检测出纳米粒子平均粒径为66.83 nm,红外分析发现偶联剂结合在粒子表面。经扫描电镜观察和孔径分布分析得出复合膜中纳米Fe3O4粒子分布均匀,无团聚现象出现,孔径分布较窄。聚乙二醇系列测定基膜为2万的复合膜截留分子量从0T下的19800减小至0.4T的15000,继续增大外加磁场,截留分子量基本不再变化。  相似文献   

15.
纳米Fe3O4磁性粒子的制备及物性研究   总被引:6,自引:0,他引:6  
利用滴定水解法制备了Fe3O4纳米颗粒,经XRD和漫反射吸收谱分析,Fe3O4晶粒粒径约为18nm,从紫外至近红外(200~3000nm)均有很强的光吸收。纳米Fe3O4有明显的负磁阻和湿敏效应,其阻抗随磁感应强度和湿度的增大而减小。  相似文献   

16.
用水解沉淀法合成了纳米Fe3O4粒子,并在其悬浮液中原位包覆聚苯胺,制备出纳米Fe3O4/聚苯胺复合粒子。研究了两种纳米粒子在交变磁场下的发热性能,对它们在定向集热治疗肿瘤中的应用前景进行了评价。纳米Fe3O4粒子的粒径为10~30nm,表面包覆聚苯胺后,复合粒子的粒径为30~50nm。纳米Fe3O4粒子的比饱和磁化强度为50.05Am2/kg,矫顽力为10.9kA/m;纳米Fe3O4/聚苯胺复合粒子的比饱和磁化强度为26.34Am2/kg,矫顽力为0。在10mg/mL的生理盐水悬浮液中,在外加交变磁场作用30min后,纳米Fe3O4粒子悬浮液的温度为63.6℃,纳米Fe3O4/聚苯胺悬浮液的温度为52.4℃,二者均达到了医学上定向集热治疗肿瘤用热籽的发热要求,是很有应用前景的医用纳米材料。   相似文献   

17.
以氨水作为沉淀剂并控制溶液的pH值,采用Fe3+和Fe2+共沉淀法制得了磁性四氧化三铁纳米颗粒。合成的磁性纳米颗粒通过高分辨透射电镜、X射线衍射仪、傅里叶变换红外光谱仪进行了表征。四氧化三铁纳米颗粒的粒径约为10nm,其表面含有丰富的羟基。为了增强磁性四氧化三铁纳米颗粒和聚合物基质之间的相互作用,在纳米颗粒的表面接枝上乙烯基单体。傅里叶变换红外光谱仪和热重分析仪的测试结果显示,聚合物链共价结合在纳米颗粒表面。表面接枝聚合后,四氧化三铁纳米颗粒由极性转变为非极性。  相似文献   

18.
通过N-异丙基丙烯酰胺与丙烯酸钠共聚包覆四氧化三铁颗粒制备了温敏磁性吸水树脂。首先采用共沉淀法制备了磁性Fe_3O_4纳米粒子,接着将Fe_3O_4纳米粒子、N-异丙基丙烯酰胺和丙烯酸钠通过水溶液自由基共聚法制备成温敏磁性吸水树脂。利用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和热重分析(TG)对所得样品进行了表征测试。通过温度敏感性、溶胀性能和退胀性能的研究发现,温敏磁性吸水树脂的临界溶解温度(LCST)为50℃左右,溶胀吸水倍率为116.74g/g,70℃下30 min能退去质量分数约为77.90%的水分,表现出了良好的吸水性和温敏性。充分溶胀的温敏磁性吸水树脂经过超声30min后Fe_3O_4含量小幅降低,表明其磁性相对稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号