首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
了解废旧锂离子电池回收利用的现状和存在的问题对回收金属元素具有非常重要的意义。将LiCoO_2与NaHSO_4·H_2O按照摩尔比1∶1、1∶2、1∶3、1∶4进行混合,混合均匀后进行酸性焙烧,采用TG-DSC-MS、XRD和SEM研究了焙烧产物中元素的存在形式和赋存状态,研究结果表明:Na元素是以LiNa(SO_4)和Na_2Co(SO_4)_2的形式存在,Li元素的赋存形式是LiNa(SO_4),Co元素的赋存形式是Co_3O_4和Na_2Co(SO_4)_2,焙烧产物致密,形状不规则。  相似文献   

2.
掌握钴酸锂(LiCoO_2)在酸性环境中的物理化学性质和赋存形式,对从报废锂离子电池中提取有价金属的工艺设计具有理论性的指导意义。本文将LiCoO_2与NaHSO_4·H_2O(1∶3)混合后进行机械球磨,并将球磨之前后的混合物进行对比,采用TG-DSC、XRD和SEM研究焙烧过程中组分、晶体结构以及形貌变化。通过TG-DSC分析表明:LiCoO_2与NaHSO_4·H_2O的混合物经过1h的球磨后,产物的组分发生了显著变化;XRD的分析结果表明,经过1h的球磨之后,Na元素是以Na_3H(SO_4)_2的形式存在,Li元素的存在方式是以LiNaSO_4,Co元素的存在形式是Co(SO4)_2·H_2O,从SEM可以看出球磨之后的产物堆积比较致密和分级化,形状不规则,颗粒的粒度较球磨之前减小,而且分布也比较均匀,但很多颗粒出现堆积现象,主要和新物质的产生有很大的关系。  相似文献   

3.
提出了针对失效钴酸锂(LiCoO_2)电极材料微结构修复的新工艺。将钴酸锂与硫酸氢钠(NaHSO_4·H_2O)分别按物质的量比为1∶0.05、1∶0.10混合,然后进行焙烧—溶解—修复。采用热重-差式扫描量热分析(TG-DSC)、电感耦合等离子体原子发射光谱仪(ICP-OES)、X射线衍射仪(XRD)、扫描电镜(SEM)等表征方法,研究了修复过程中材料的热量和质量的变化、成分的变化、相组成及晶胞参数的变化以及材料表面形貌的变化。研究结果表明,钴酸锂与硫酸氢钠混合在酸性环境焙烧的过程中其表面微结构发生了明显变化。以钴酸锂与硫酸氢钠物质的量比为1∶0.05的混合物经焙烧—溶解—修复所得钴酸锂,其晶格参数a=0.281 90 nm、c=1.390 41 nm、c/a=4.932 3,十分接近商用钴酸锂的晶格参数值。再生修复的钴酸锂材料颗粒粒径小,形状不规则。  相似文献   

4.
《化学工程》2017,(10):74-78
为了探索出低成本、大规模、高效益生产农用磷酸二氢钾的方法,文中拟对硫酸和硫酸氢钾混合分解磷矿进行工艺研究。考察了搅拌速率、KHSO_4与H_2SO_4的摩尔比、初始SO_4~(2-)浓度、反应温度以及加料时间对P2O_5收率的影响,并在此基础之上进行正交试验。得到最优工艺条件为:搅拌速率为300 r/min,n(KHSO_4)∶n(H_2SO_4)=0.2∶0.3,初始SO_4~(2-)质量分数为15%,反应温度为65℃,加料时间为50 min。该工艺使用的原料廉价易得,能较大地降低生产成本,具有较好的开发利用价值。  相似文献   

5.
硫酸铜和海波的制造方法颇多,吾人采用下列方法硫酸铜Cu+2H_2SO_4=CuSO_4+2H_2O+SO_2海波Na_2CO_3+2H_2O+2SO_2=2NaHSO_3+H_2O+CO_22NaHSO_3+Na_2CO_3=2Na_2SO_3+H_2O+CO_2Na_2SO_3+S=Na_2S_2O_3  相似文献   

6.
概述磺化或磺甲基化是对煤、腐植酸(HA)进行化学改性的重要手段之一。按磺化试剂分类,磺化方法有SO_2法、SO_3法、H_2SO_4法、H_2SO_4—BF_3法、Na_2SO_3或NaHSO_3法、Na_2SO_3—HCHO或NaHSO_3—HCHO法等。  相似文献   

7.
在己内酰胺生产中,亚硫酸氢铵用来制备硫酸羟胺溶液,其反应如下:2NaNO_2+2NH_4HSO_3+2SO_2+4H_2O→(HONH_2)_2·H_2SO_4+(NH_4)_2SO_4+Na_2SO_4+H_2SO_4 由于亚硫酸氢铵的不稳定性,在一定条件下会分解成硫代硫酸铵及三硫化合物。硫代硫酸铵在酸性介质中又被分解为二氧化硫、硫化氢与元素硫。这些分解产物对环己酮的肟化过程有很大的影响。由于有这些分解产物存在,当肟化反应搅拌不良或pH值控制不当时,在肟化溶液中就会生成多硫化铵等杂质,而环已酮肟的颜色亦随之由白色变为黄色、棕色,甚至是深褐色。  相似文献   

8.
以FeSO_4·7H_2O、Co(NO_3)_2·6H_2O和乙二醇为主要原料,采用水热法制备Co/Fe催化剂,通过XRD、FTIR、BET等检测手段对其结构进行表征,并考察了Co/Fe催化剂催化硼氢化钠还原水中对硝基苯酚的活性。结果表明,Co/Fe催化剂以CoFe_2O_4形式存在,其催化活性随钴含量的增加逐渐增强,催化反应过程符合准一级反应动力学方程;在Co/Fe-1/2(钴铁物质的量比为1∶2)催化剂用量为0.020 0 g、硼氢化钠用量为2.0 mL时,催化反应速率最大,反应速率常数为0.359 2 min~(-1),催化效果最好。  相似文献   

9.
采用共沉淀法制备锰酸钴活化剂,扫描电镜(SEM)、红外(FTIR)和X射线衍射(XRD)对Co Mn2O4进行表征分析。以酸性黑LD为降解污染物,研究Co Mn2O4活化过硫酸钠降解酸性黑LD的性能。考察了过硫酸钠浓度、初始染料浓度和活化剂重复使用对降解的影响。结果表明,活化剂经600℃焙烧3 h,可得到完整晶相的Co Mn2O4;初始污染物浓度与过硫酸钠浓度对酸性黑LD的降解性能都有很大的影响,活化剂经过6次的重复使用实验,酸性黑LD的降解率仍达到80%以上。  相似文献   

10.
采用溶胶-凝胶法制备铁酸镍(NiFe_2O_4)活化剂,利用热重(TG)、红外(FTIR)、X射线衍射(XRD)和扫描电镜(SEM)对NiFe_2O_4进行表征分析。以酸性红玉SBL为降解污染物,研究NiFe_2O_4活化过硫酸钠降解酸性红玉SBL的性能。考察了过硫酸钠浓度、NiFe_2O_4用量和初始染料浓度对降解的影响。结果表明,活化剂经700℃焙烧5 h,可得到完整晶相的NiFe_2O_4;当初始污染物浓度为20 mg·L-1,过硫酸钠浓度为1.0 g·L-1,NiFe_2O_4用量为2.5 g·L-1时,降解2.5 h,酸性红玉SBL染料溶液的降解率可达85.2%。  相似文献   

11.
目前,研究者仍然不清楚机械研磨处理对从废锂离子电池中获得的钴酸锂(LiCoO2)的硫酸化焙烧的影响。对钴酸锂与一水合硫酸氢钠(NaHSO4·H2O)混合物球磨前后的产物进行热重-差热-质谱(TG-DSC-MS)分析,结果表明球磨处理使焙烧环节焙烧温度降低。对钴酸锂与一水合硫酸氢钠混合物采用不同球磨时间处理后再进行焙烧,对焙烧产物进行X射线衍射分析发现,球磨0.5 h后的焙烧产物中出现了LiNaSO4、Na6Co(SO4)4和Na2SO4。对焙烧产物进行扫描电镜-能谱(SEM-EDS)分析,结果表明焙烧产物形貌不规则,呈大小不同的块状,而且颗粒有团聚现象,氧、硫、钠、钴在整个焙烧产物中呈弥散状态均匀分布。  相似文献   

12.
杨一可  王皓  周慧  陈丹云 《应用化工》2011,40(8):1340-1342
以30%H2O2为氧源,NaHSO4.H2O、KHSO4为酸性配体,磷钨酸为催化剂催化氧化环己酮合成了己二酸。考察了催化剂用量、H2O2用量、酸性配体用量、反应时间以及催化剂重复使用性等因素对己二酸收率的影响。结果表明,磷钨酸在反应体系中有良好的催化活性,并且具有操作方便,条件温和等优点。适宜反应条件为n(环己酮)∶n(磷钨酸)=1∶0.002(摩尔比),硫酸氢钠0.1 g,30%H2O245 mL,回流反应6 h,己二酸收率66.7%;以KHSO4为酸性配体时,己二酸的收率可达71.2%。  相似文献   

13.
采用湿式破碎分选、钴酸锂与碳粉混合物预焙烧、钴酸锂预焙烧产物与硫酸钠和浓硫酸混合体系焙烧、热水浸出焙烧产物中的钴,研究了钴酸锂的焙烧及浸出过程。实验结果显示:锂离子电池经湿式破碎分选后铜箔的回收率大于97%,钴酸锂粉末回收率大于98%;钴酸锂与碳粉混合物经700℃预焙烧2 h后再与硫酸钠和浓硫酸在200℃下焙烧4 h,焙烧产物用70℃热水浸出30 min,钴的浸出率可达97%;XRD分析焙烧产物发现生成了Na2Co(SO4)2和Na6Co(SO4)4。  相似文献   

14.
铁酸盐纳米材料的制备   总被引:4,自引:2,他引:2  
以硫酸盐为原料,按n(Fe2 + )∶n(NaOH)∶n(NaHCO3) =1∶1 .8∶2.0 添加NaOH 和NaHCO3 ,制备出晶粒细小的碱式碳酸盐前驱体,干燥后在500℃通气焙烧1h,分别制备出ZnFe2 O4 、NiFe2 O4和CoFe2 O4 纳米材料,经XRD和TEM检测,粒径为40~50nm ,粒度均匀  相似文献   

15.
用(NH4)2SO4焙烧分解碳素铬铁冶炼渣,提取有价金属,考察了焙烧温度、硫酸铵用量和焙烧时间对有价金属浸出率及过程相变的影响. 结果表明,焙烧过程中250~435℃间失重达65.5%,主要为NH3,H2O,SO3释放及(NH4)2SO4挥发. 优化的焙烧条件为(NH4)2SO4与铝镁渣质量比5:1、焙烧温度350℃,焙烧时间3.5 h. 有价金属转变为其相应的硫酸金属铵盐,且与(NH4)2SO4分解产物共存;该条件下的焙烧料90℃下浸出1 h,Mg, Al, Cr, Fe的浸出率分别为92%, 80%, 82%, 93%. 推测新生成的硫酸金属铵盐的片状聚集体阻碍碳素铬铁渣内部完全被(NH4)2SO4侵蚀.  相似文献   

16.
用Fe2O3与Na2CO3制备铁酸钠用于脱除含硫铝酸钠溶液中的硫,采用氧化焙烧及水浸方式对铁基脱硫渣(NaFeS2?2H2O)进行再生,研究了其循环脱硫效果. 结果表明,铁基脱硫渣于950℃下在氧化性气氛中焙烧1 h,可除去脱硫渣中70%的硫;将焙烧渣水浸,硫含量降至0.2%以下,总硫去除率达99%. 将除硫后的浸出渣再制备铁酸钠用于循环脱硫,脱硫率可达67.65%,与初始脱硫剂的脱硫率(69.09%)相当,可实现铁基脱硫剂的再生循环. 焙烧时渣中硫主要以SO2气体排出,剩余可溶性Na2SO4则在水浸过程中进入溶液而被除去.  相似文献   

17.
萃取磷酸生产中副产的大量固体废弃物磷石膏已成为制约磷复肥工业发展的重要因素.针对我国可溶性钾矿资源严重匮乏,而钾长石储量丰富,指出了利用磷石膏与钾长石生产硫酸钾具有现实意义.试验研究了 KAlSi3O8—CaSO4—CaCO3体系的配料比、焙烧温度、焙烧时间、助剂、焙烧样粒度对焙烧产物中 K2O收率的影响,确定了在 n(KAlSi3O8)∶n(CaSO4)∶n(CaCO3)=2∶1∶6配料比下,最适宜的工艺条件为:焙烧温度1000℃、焙烧时间2.0h、助剂 Na2SO4用量为反应物料总量的7%,焙烧产物粒度为74~84μm(180~200目),钾长石中 K2O收率达90%以上.  相似文献   

18.
以铅锌废渣为锌源,通过浸取、除杂、蒸发、干燥和焙烧等步骤制备纳米ZnO.ZnO前驱体的X射线衍射(XRD)、红外光谱分析(IR)、热重(TGA)和差热分析(DSC)分析表明:ZnO 前驱体是无定型碱式碳酸锌(Zn5 (CO3)2(OH)6),加热过程中它先分解成ZnO和Zn(OH)2,然后Zn(OH)2进一步分解成ZnO.焙烧产物的XRD、扫描电镜(SEM)和粒度分析显示:在400 ℃的温度下下焙烧时,ZnO前驱体分解产物是红锌矿(ZnO)和Ashoverite (Zn(OH)2);在500 ℃和600 ℃焙烧时,前驱体完全转化为红锌矿,其形貌不规则,但是前驱体在500 ℃焙烧时,产物ZnO的粒径较小,主要分布在80~150 nm,在600 ℃焙烧时,产物的颗粒团聚严重.  相似文献   

19.
分别采用SnCl4.5H2O、对甲苯磺酸、NaHSO4.H2O和KHSO4催化苯胺、苯甲醛和环己酮的Mannich缩合反应一锅法合成了2-[苯基(苯胺基)甲基]环己酮(PPMC)。系统考察了原料配比n(环己酮)∶n(苯胺)及n(苯甲醛)∶n(苯胺)、催化剂用量、反应温度和反应时间对PPMC收率的影响,并就四种催化剂催化性能进行了比较。实验结果表明,适宜反应条件为n(苯甲醛)∶n(苯胺)∶n(环己酮)=1∶1∶1.2,催化剂用量为反应物总质量的3.36%~13.45%,反应温度15~25℃,反应时间1~4h,PPMC收率为77.4%~84.2%。其中SnCl4.5H2O和对甲苯磺酸具有较理想的催化活性,催化剂用量少,反应时间短,收率高。该合成工艺路线简捷,催化剂价廉易得,使用方便,反应条件温和,收率可观。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号