首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
形状记忆聚合物可以对外界刺激做出响应,由初始形状转变为临时形状,最后回复到初始形状,在医疗卫生、电子通讯、航空航天等领域表现出广阔的应用前景。由于具有生物来源性、良好的生物降解性和生物相容性,聚乳酸基形状记忆材料有望替代传统合金材料应用于组织工程、手术缝合线和矫形外科等领域。文中介绍了热致形状记忆聚合物的形状记忆机理,重点阐述了聚乳酸的形状记忆特点和形状记忆性能调控方法进展,并对其应用前景进行了展望。  相似文献   

2.
综述了形状记忆聚合物的种类、驱动方式以及形状记忆聚合物复合材料,同时介绍了其在空间锁紧释放机构中的应用,分析了各种锁紧释放机构的优缺点,并讨论了基于形状记忆聚合物材料的航天器新型锁紧释放机构关键技术,包括结构设计、加热源、承载能力、地面试验技术和重复使用性等。随着智能材料的进一步发展,基于形状记忆聚合物材料的锁紧释放机构有望取代火工品锁紧释放机构。  相似文献   

3.
智能材料是一种能够感知外部环境变化并自主进行判断、处理以及适度响应的新型智能多功能材料,同时也是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,它的兴起引发了材料科学的一次新的革命。本文从形状记忆智能复合材料的历史起源入手,聚焦形状记忆合金和形状记忆聚合物最新研究成果,分别从形状记忆机理和工程实际应用等多个角度进行阐述,并对现阶段的技术发展难题,如形状记忆合金:生物相容性差、形变恢复小、驱动速度缓慢、疲劳寿命短;形状记忆聚合物:增材制造技术过程复杂、强度和刚度小等进行讨论,最后对未来发展前景进行展望。  相似文献   

4.
激励响应复合材料是一种智能材料,通常具有自感知、自主响应、形状记忆、自适应和自修复等特征。本文对4D打印中使用的激励响应材料进行了综述,重点介绍4D打印形状记忆复合水凝胶和形状记忆聚合物(SMP)及其复合材料的应用研究进展。最后,总结了4D打印在生物医疗和航空航天领域的应用现状,并对4D打印的未来发展趋势以及应用前景进行展望。4D打印是一项新兴制造技术,尽管目前已经出现了许多不同的打印方法、可打印智能材料和驱动方式,但是4D打印在实际工程应用中仍然面临许多挑战。新打印技术、新智能材料、新结构设计和建模软件需要发展以促进4D打印在软机器人、生物医学、航空航天和智能电子设备等领域的实际应用。  相似文献   

5.
1前言 聚氨酯全称"聚氨基甲酸酯",由于其优异的稳定性、耐化学性、回弹性和力学性能,属于一种应用广泛的工程塑料.随着科技发展,人们对智能材料、自修复材料、形状记忆材料需求与日俱增.形状记忆聚合物能够对光、热、电、溶剂等外界刺激进行相应反馈,通过改变分子内部及分子间的化学交联或物理交联方式发生可逆的形状转变,在医学材料、...  相似文献   

6.
聚乳酸(PLA)作为一种新型的生物可降解材料,来源广泛、加工性能良好,但其硬而脆的属性限制了其在一些领域的应用。近年来,人们采用多种方法对PLA进行增强增韧改性以获得最优性能。文中针对PLA的特性、功能化和高性能化的发展趋势,并结合笔者课题组有关PLA的工作,首先揭示了PLA增强增韧的机理,然后从化学改性和物理改性两方面介绍了PLA的改性方法,随后讨论了聚乳酸与生物降解型和非生物降解型聚合物组成的复合材料,最后总结了聚乳酸在绿色电子器件、生物医用材料、形状记忆功能材料等领域中的应用,并对其未来的发展形势做出了展望,为开发新型聚乳酸增强增韧策略提供新的方法和思路。  相似文献   

7.
形状记忆聚合物(SMP)是一种典型的智能材料,其在特定条件下可以变形成临时形状,并在环境条件变化下固定该临时形状,再次受到刺激后可以主动回复到初始形状。在智能制造领域,智能材料与增材制造技术的结合催生了4D打印技术,实现了3D打印领域的跨越发展。当前主要发展的是形状记忆聚合物4D打印技术。文中重点介绍了4D打印SMP的实现方式以及各种刺激响应材料的特点,然后介绍了基于形状记忆聚合物的4D打印结构在航空航天、生物医疗和柔性机器人领域的应用研究,最后总结了4D打印形状记忆聚合物未来可能遇到的问题并展望了其未来可能的研究方向,旨在让更多人认识4D打印技术,促进其在各行业的应用发展。  相似文献   

8.
多功能形状记忆聚合物的研究进展   总被引:1,自引:0,他引:1  
形状记忆聚合物是一种可以响应外界刺激,并调整自身力学参数,从而回复预先设定形状的一种智能材料,它在自动化、包装材料、微/纳米电子机械等领域具有优越的应用价值。为了进一步拓展形状记忆材料的实际应用范围,满足一些特殊领域(如航空航天、生物医学)的功能化要求,弥补材料单一形状记忆功能所造成的不足,多功能形状记忆聚合物愈来愈受到材料科学家的青睐。本文概述了多功能形状记忆聚合物增加的大致原理及方法,综述了目前多功能形状记忆聚合物的研究进展,包括具有优良热学、力学、光学、电学、磁学、生物学功能的形状记忆聚合物,最后展望了多功能形状记忆聚合物的发展前景。  相似文献   

9.
光响应形状记忆聚合物是一类刺激响应智能材料,它可以根据光照变化做出相应的形状改变。相比于传统的热响应形状记忆聚合物,光响应形状记忆聚合物具有远程控制、非接触式操作、局部驱动等优点。通过综述光响应形状记忆聚合物的研究进展,介绍光响应形状记忆聚合物的定义、机理、研究现状,以及光响应形状记忆聚合物在自修复材料、柔性电子器件和传感驱动领域的应用前景。总结了光响应形状记忆聚合物的优点,提出所面临的问题并进行了展望。  相似文献   

10.
王坤  朱光明 《材料导报》2012,26(1):12-15
形状记忆聚合物是一种新型智能材料,广泛应用于医疗和航天领域。但是传统的形状记忆聚合物由于力学强度低、形变回复力小等缺点使其发展应用受到限制。主要介绍了以各种形状记忆聚合物为基体,添加增强填料来制备形状记忆聚合物复合材料,并且描述了复合材料的形状记忆效应与力学性能和填料的体积分数或质量分数之间的关系,以及形状记忆聚合物复合材料的应用领域与前景。  相似文献   

11.
梁琦  杨群  王黎明  代正伟 《功能材料》2020,(4):4054-4060,4083
温敏聚酰胺-胺型(PAMAM)树状聚合物是同时具有温敏特性和树状大分子性能的一类聚合物,其不但受温度变化会发生刺激响应,同时具有PAMAM树状聚合物多反应位点、低粘度、高支化度、特殊的三维结构等特点。这类聚合物在医用材料、纺织面料、温敏传感器等领域有着广泛的应用前景。温敏聚PAMAM树状聚合物的制备方法丰富多样,可以采用调节树状聚合物末端基元取代度、或者调节聚合物中亲水链段的比例、或在树状大分子末端接枝具有温敏性的物质等方法。本文就温敏型PAMAM树状聚合物的制备方法、温敏机理及应用领域等方面进行综述。  相似文献   

12.
Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.  相似文献   

13.
Shape memory polymers (SMPs) belong to a class of smart polymers, which have drawn considerable research interest in last few years because of their applications in microelectromechanical systems, actuators, for self healing and health monitoring purposes, and in biomedical devices. Like in other fields of applications, SMP materials have been proved to be suitable substitutes to metallic ones because of their flexibility, biocompatibility and wide scope of modifications. The shape memory properties of SMPs polymers might surpass those of shape memory metallic alloys (SMAs). In addition to block copolymers, polymers blends and interpenetrating network structured SMP systems have been developed. The present review mainly highlights the recent progress in synthesis, characterization, evaluation, and proposed applications of SMPs and related composites.  相似文献   

14.
Shape memory polymers (SMPs) are a kind of very important smart polymers. In order to improve the properties or obtain new functions of SMPs, SMP composites and blends are prepared. We thoroughly examine the research in SMP composites and blends achieved by numerous research groups around the world. The preparation of SMPs composites and blends is mainly for five aims: (1) to improve shape recovery stress and mechanical properties; (2) to decrease shape recovery induction time by increasing thermal conductivity; (3) to create new polymer/polymer blends with shape-memory effect (SME); (4) to tune switch temperature, mechanical properties, and biomedical properties of SMPs; (5) to fabricate shape memory materials sensitive to electricity, magnetic, light and moisture. The trend of SMP composite development is discussed. SMP composites and blends exhibit novel properties that are different from the conventional SMPs and thus can be utilized in various applications.  相似文献   

15.
16.
聚氨基酸共聚物合成研究进展   总被引:8,自引:0,他引:8  
聚氨基酸共聚物是一类新型生物降解高分子材料。文中简单综述了聚氨基酸-聚醚嵌段共聚物、聚氨基酸-甲壳素共聚物、聚氨基酸-硅氧烷共聚物和聚氨基酸-聚酯共聚物的合成方法。  相似文献   

17.
形状记忆高分子材料(SMPs)作为一种新型功能材料具有生物相容性好、形变率大、形变温度可调、易于加工、可引入生物降解组分等特点,近年来,特别是在生物医药领域,SMPs已成为研究人员广泛关注的焦点之一。根据SMPs的功能及其应用研究现状,着重综述了近年来SMPs在矫形固定材料、药物缓释体系、手术缝合、微创医疗器械以及组织工程等生物医学领域的主要研究和应用,并展望了SMPs在生物医学领域未来的研究方向和前景,同时,简要介绍了SMPs的发展概况及其具有形状记忆效应的原理。  相似文献   

18.
形状记忆聚合物是一种新型的智能材料,与记忆合金相比它具有密度低、高恢复率、易生产和低成本等优点。由于这些特性,它广泛应用于医疗和航天等领域,其理论研究逐渐得到人们的重视。形状记忆聚合物主要通过热致变形来实现形状记忆和恢复效应,因此热力学本构模型是其材料的形状记忆和恢复功能的关键因素。文中介绍了形状记忆聚合物热力学本构模型的一些理论研究成果,并对其中存在的一些问题作了简要地讨论。  相似文献   

19.
Temperature-sensitive (thermosensitive) hydrogels, which are part of the family of stimulus-sensitive hydrogels, consist of water-filled polymer networks that display a temperature-dependent degree of swelling. Thermosensitive hydrogels, which can undergo phase transition or swell/de-swell as temperature changes, have great potential in various technological and biomedical purposes for a number of reasons: their temperature response is reversible, hydrogels are stable and easy to prepare, they can be biocompatible and also be suitably combined with other organic and inorganic materials, resulting in new materials with outstanding properties. Among thermosensitive hydrogels poly(N-isopropylacrylamide) (PNIPAAm) is the most extensively studied because it brings together the best properties of these materials. Consequently, in the past few years, a wide number of applications and new chemical processes to prepare PNIPAAm and their derivatives are being proposed. The objective of this review is to summarize the fundamentals of thermosensitive hydrogels and recent advances in preparation and both technological and biomedical applications of thermosensitive hydrogel, with a special focus on PNIPAAm and their derivatives. Special attention has been given to the discussion of challenges and future research perspectives based on new horizons not yet considered.  相似文献   

20.
Shape memory properties provide a very attractive insight into materials science, opening unexplored horizons and giving access to unconventional functions in every material class (metals, polymers, and ceramics). In this regard, the biomedical field, forever in search of materials that display unconventional properties able to satisfy the severe specifications required by their implantation, is now showing great interest in shape memory materials, whose mechanical properties make them extremely attractive for many biomedical applications. However, their biocompatibility, particularly for long‐term and permanent applications, has not yet been fully established and is therefore the object of controversy. On the other hand, shape memory polymers (SMPs) show promise, although thus far, their biomedical applications have been limited to the exploration. This paper will first review the most common biomedical applications of shape memory alloys and SMPs and address their critical biocompatibility concerns. Finally, some engineering implications of their use as biomaterials will be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号