首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
为了研究ZK60镁合金的热变形行为,采用Gleebe-1500热模拟机在变形温度为423~673K、应变速率为0.001~10s-1条件下对合金进行的热压缩试验.分析合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立合金流变应力本构方程,并观察合金变形过程中的显微组织演变.结果表明:变形温度低于473K且应变速率大于0.1s-1时试样发生宏观开裂;在变形温度较高和应变速率较低时,合金真应力-真应变曲线具有动态再结晶特征.随变形温度升高和应变速率的降低流变应力减小,热压缩后的组织中再结晶现象越明显;应变速率越高,再结晶晶粒越细小.  相似文献   

2.
为了分析ZK60镁合金和Al18B4O33w/ZK60复合材料的高温热变形行为,研究其高温流变应力与应变速率、变形温度之间的关系和组织情况,确定其应变速率敏感指数m和表观激活能Q.利用Gleeble-1500D热模拟试验机,在变形量为60%和不同温度、不同应变速率的条件下对其进行高温热压缩变形.研究表明:在温度为573~673 K和应变速率为0.001~0.1 s-1范围内,镁合金的应变速率敏感指数m值为0.14,复合材料的m值为0.12;合金的表观激活能Q值为226~254 kJ/mol;复合材料的Q值为254~283 kJ/mol.  相似文献   

3.
ZK60镁合金的热压缩变形行为   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟机在温度250~400℃、应变速率0.001~1s-1、最大变形程度105%的条件下对ZK60镁合金进行了高温压缩模拟实验研究。分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系,计算了变形激活能和应力指数,并观察了热压缩变形过程中组织的变化。结果表明,合金的峰值流变应力随应变速率的增大而增加,随温度的升高而减小;在给定的变形条件下,计算出合金的变形激活能为63~130kJ/mol,应力指数为2.78~3.79;降低变形温度和提高应变速率可使再结晶晶粒的平均尺寸减小。  相似文献   

4.
在Gleebe-1500热力模拟机上,采用双道次间隙式等温热压缩实验,对ZK60镁合金双道次热变形过程中的道次间软化规律进行了研究.变形温度为200℃和300℃,应变速率为0.005s-1和0.05s-1,道次间隙停留时间在1~300s之间变化.结果表明:材料在变形道次间的主要静态软化机制是亚动态再结晶,建立了亚动态再结晶动力学模型,相应的亚动态再结晶激活能约为50.12kJ/mol,远小于动态再结晶激活能.  相似文献   

5.
薛克敏  薄冬青  李萍 《材料导报》2018,32(8):1306-1310
对轧制态7A60铝合金在应变速率为0.1~0.01s-1、变形温度为250~350℃条件下热压缩的显微组织特征和流变应力进行实验研究。结果表明:随着应变速率的降低和温度的升高,材料的各向异性减弱,均匀性增强,晶粒发生明显粗化;在热变形的过程中该合金的主要软化机制为动态回复和动态再结晶,峰值应力随应变速率的增加而增大,随温度的升高而降低,在应变速率为0.01s-1时发生了明显的非连续动态再结晶行为。合金热变形的流变应力行为可用双曲正弦函数来表示,其热激活能为438.981kJ/mol。  相似文献   

6.
为了研究镁合金高温塑性变形行为,采用Gleeble-1500型热/力压缩模拟机对ZK60-RE稀土镁合金在423~673 K及0.002~0.1 s-1应变速率进行不同变形程度的高温压缩模拟试验,分析了实验合金在高温压缩变形时流变应力、应变速率以及变形温度之间的关系,推导并计算了不同应变速率和不同温度下的变形激活能,并观察了不同变形程度的显微组织.结果表明:试验合金在一定变形速度下,较低的温度压缩时以加工硬化为主,较高的温度下以动态再结晶为主.峰值应力随变形速度的降低和温度的升高而下降.合金的变形激活能在523~623 K内迅速上升.  相似文献   

7.
采用Gleeble-1500热模拟试验机对ZK60镁合金在变形温度为150~400℃,应变速率为0.001~10 s-1条件下的热变形行为进行研究,利用双曲正弦关系式描述了该合金在热变形过程中的稳态流变应力;根据合金动态模型,计算并分析了该合金的加工图.研究表明:利用加工图可确定出该合金热变形的流变失稳区,导致变形失稳的原因主要是孪生和局部流变;试验条件下热变形的最佳工艺参数为变形温度350℃,应变速率0.001 s-1,在该条件下合金发生完全再结晶,具有较好的塑性.  相似文献   

8.
黄光杰  钱宝华 《材料导报》2007,21(Z2):368-369
通过MTS试验机进行等温压缩实验,变形温度范围473~623 K、应变速率范围0.001~1 s-1,研究了AZ31镁合金的流变应力行为及其微观组织的演变规律.结果表明,变形温度、应变速率与峰值应力之间的相互关系可用指数模型来描述,其激活能约为138.13kJ/mol,而动态再结晶则是该合金在热变形过程中的主要软化机制和晶粒细化手段.  相似文献   

9.
采用Gleeble-3500热模拟试验机对挤压态AZ40合金进行热压缩实验,分析压缩后不同温度真应力-应变曲线的变化趋势,得到流变应力受变形温度和应变速率等因素的影响规律;在双曲正弦关系的基础上构造挤压态AZ40合金的本构方程,在动态材料模型(DMM)基础上建立挤压态AZ40合金的热加工图,从而确定挤压态AZ40镁合金的热变形加工范围.结果表明:明显的动态再结晶是挤压态AZ40镁合金流变曲线的特点,在压缩过程中,随变形温度的升高,挤压态AZ40镁合金的峰值应力减小;随应变速率升高,挤压态AZ40镁合金的峰值应力增大.当变形温度相同时,动态再结晶晶粒比例随着应变速率的升高而降低;当应变速率相同时,动态再结晶晶粒大小随着变形温度的升高而增大.粗大的未再结晶晶粒有明显的<1010>‖ND和<21-1-0>‖ND两种取向,而再结晶晶粒取向随机;通过热加工图及组织分析,确定了最佳的加工工艺为T=573 K,ε·=0.1 s-1.  相似文献   

10.
在温度为360~450℃、应变率为0.001~1s-1的变形条件下,采用Gleeble-1500D热模拟机对固相回收SiC_p/ZK60镁基复合材料的高温压缩变形行为进行研究。结果表明:固相回收SiC_p/ZK60的流变应力随变形温度的升高而降低,随应变率的升高而升高,且随应变的增加,流动应力很快达到峰值,然后逐渐趋于稳定。固相回收SiCp/ZK60热压缩变形应力指数为3.348,变形激活能为64.97kJ/mol,其高温压缩流变应力模型为ε'=4.69×104[sinh(0.051σ)]3.348exp(-64790/(RT));本试验条件下,固相回收SiC_p/ZK60的流变应力模型可以用Zener-Hollomon参数的双曲线函数形式进行描述。  相似文献   

11.
ZK60镁合金高温动态再结晶行为的研究   总被引:1,自引:1,他引:0  
采用Gleeble-1500热模拟试验机进行压缩实验,研究了ZK60镁合金在变形温度为473~723K、应变速率为0.001~1s~(-1)范围内变形过程中的组织演变.分析了变形程度、变形温度、变形速率对其动态再结晶行为的影响,探讨了其动态再结晶的形核机制.结果表明:ZK60合金高温塑性变形时的主要软化机制为动态再结晶,变形温度623K,应变量超过0.24时,在原晶界处出现大量的动态再结晶晶粒,并形成易延展的剪切区.变形温度是影响ZK60合金动态再结晶晶粒尺寸的主要因素,变形温度高于623K时,动态再结晶晶粒超过25μm.ZK60合金动态再结晶晶核在晶界弓弯处形成,随着应变量增加,出现亚晶界合并长大,长条状亚晶快速长大以及在剪切带变形区形核等.  相似文献   

12.
为研究含稀土元素铈的镁合金中高温流变行为,利用热模拟试验机对Mg-6Zn-0.5Zr-1.5Ce合金在变形温度523~673 K、应变速率0.001~1 s-1范围内进行热压缩实验.基于真应力真应变实验数据构建了单隐层前馈误差反向传播人工神经网络模型,利用该模型对ZK60-1.5Ce合金的流变应力行为进行预测,并分析了变形温度、应变速率与真应变对流变应力的影响.研究表明:Ce添加可显著细化晶粒;该镁合金的流变应力随变形温度降低和应变速率升高而增加;其流变应力行为可用双曲正弦函数进行描述,依据峰值应力拟合求得该合金的表观激活能为161.13 kJ/mol;变形温度和应变速率对流变应力的影响高于真应变.所建立的人工神经网络模型可以很好地描述该镁合金的流变应力,其预测值与实验数值吻合良好.  相似文献   

13.
在Gleeble-1500D热模拟仪上进行热压缩实验,研究温度从300℃~450℃、应变速率为0.001~10s^-1时2519A铝合金热压塑行为,并用金相显微镜分析在不同热压缩条件下的组织形貌特征。结果表明,流变应力开始随着应变的增大而增大,出现峰值之后慢慢减小并慢慢趋于平稳。应力峰值随温度的增加而减小,随应变增大而增大,其热变形行为可用包含Zener-Hollomon参数的双弦本构关系来描述,得到平均激活能Q=223.11706kj/mol。合金在0.001s^-1~1s^-1。应变速率条件下软化机制主要为动态回复,而当应变速率上升到10s^-1后,合金微观组织出现局部动态再结晶。  相似文献   

14.
The hot deformation behavior of a Mn-Cu-V weathering steel was investigated at temperatures ranging from 850 to 1050℃ and strain rates ranging from 0.01 to 5 s-1 using MMS-300 thermal-mechanical simulator. The activation energy for dynamic recrystallization and stress exponent were calculated to be 551 kJ/mol and 7.73, respectively. The accurate values of critical strain were determined by the relationship between work hardening rate and flow stress (θ-σ) curves. The hyperbolic sine constitutive equation was employed to describe the relationship between the peak stress and Zener-Hollomon parameter during hot deformation. The interaction between dynamic recrystallization and dynamic precipitation of V(C,N) at a low strain rate was analyzed. The results showed that precipitation particles size of weathering steel increased with increasing strain at deformation temperature 950℃ and strain rate 0.1 s-1. The calculation results of the recrystallization driving force and pinning force showed that dynamic precipitation could retard the progress of dynamic recrystallization but not prevent it while the pinning forces is less than driving force. On the contrary, dynamic precipitation can effectively prevent the progress of dynamic recrystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号