首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
对自主设计的新型亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn(%,质量分数)在不同温度进行固溶和固溶时效处理,观察其显微组织和测试室温拉伸性能。结果表明:随着固溶温度的提高固溶态组织中的初生α相减少,当固溶温度高于相变点后初生α相完全消失,几乎全部为明显长大的粗大β晶粒。固溶温度为900℃的固溶态合金具有良好的强度和塑性匹配,屈服强度为898.7 MPa、抗拉强度为962.5 MPa、断裂伸长率为12.7%。在不同温度固溶处理的时效态合金,均析出了细小的次生α相。固溶温度低于相变点时,在初生α相间析出的细小次生α相呈60°或者平行交错排列;固溶温度高于相变点时初生α相几乎完全消失,随着固溶温度的提高析出的次生α相片层间距变大并粗化。在所有固溶温度下,时效态组织中沿原始β晶界处均析出了连续的晶界α相,合金的塑性均较差。经过750℃/0.5 h固溶和500℃/4 h时效的合金具有良好的强度和塑性匹配,其抗拉强度为1282 MPa,屈服强度为1210.6 MPa,断裂伸长率为5.3%。  相似文献   

2.
将经过不同冷轧处理的Fe-15Mn-10Al-0.3C钢在900℃退火,使用SEM、XRD以及EBSD等手段研究了退火过程中钢的组织和性能的演变。结果表明:在退火过程中冷轧钢的奥氏体带发生了同素异构转变,γ相转变为α相,且转变量随着退火时间的延长而增加;同素异构转变影响退火试样的拉伸变形行为。随着退火时间延长α相和γ相的取向从近邻关系到满足K-S,有利于位错穿过相界滑移,使塑性提高;对于退火时间足够长的冷轧钢,两相之间的K-S关系失去相关性,塑性下降。通过该转变能调控α-铁素体与γ-奥氏体之间滑移系的平行程度,改善Fe-Mn-Al-C钢的塑性。  相似文献   

3.
研究了固溶温度对一种亚稳β钛合金(Ti-4Al-6Mo-2V-5Cr-2Zr)的锻态组织和室温拉伸性能的影响。结果表明,固溶温度低于相变点时大量的α相在β基体中析出并聚集在滑移带附近,随着固溶温度接近相变点α相的数量减少且部分滑移带消失。固溶温度高于相变点时显微组织为单一的β相且滑移带完全消失,随着固溶温度继续升高β晶粒聚集且长大。这种合金经750℃×1 h固溶处理后达到良好的强度塑性匹配,气抗拉强度、屈服强度和伸长率分别为957 MPa、887 MPa和11.7%。  相似文献   

4.
观察Al-Fe合金的显微组织并测量其力学性能和导电性能,研究了Cu元素和形变热处理对其性能的影响。结果表明:在铸态Al-Fe-Cu合金组织中,Cu元素在基体内均匀分布,而Fe元素在晶界处偏析;挤压态的Al-0.7Fe-0.2Cu合金其性能最优:导电率为59.90%IACS,抗拉强度为108 MPa,硬度为31.2HV;随着退火温度的提高Al-0.7Fe-0.2Cu合金的抗拉强度急剧降低,在400℃退火时其抗拉强度最低(100 MPa),伸长率最高(31.3%);在250℃退火时导电率出现峰值(62.61%IACS)。在退火Al-0.7Cu-0.2Cu合金中有许多细小针状的θ(Al2Cu)相析出,并与位错交互缠结。随着退火温度的提高合金中的位错密度降低,晶粒细化。  相似文献   

5.
使用XRD、TEM、DSC和室温拉伸等分析测试手段,对冷轧后经不同退火温度处理的Ti-13V-3Al-0.5Cu(%,原子分数)合金微观组织结构,马氏体相变行为,力学性能和形状记忆性能进行了研究。经冷轧、退火处理后,合金在室温下的组织主要为α"马氏体相,存在少量残余β母相、α相和Ti2Cu第二相。随着退火温度的增加,合金形状记忆性能先升高后降低;当退火温度为750℃时,在预应变量为6%的前提下可实现5.3%的可回复应变。其组织结构观察结果表明,经冷轧、退火处理后,合金中α"马氏体形貌由“V”字型自协作组态向择优取向的单一取向马氏体板条转化,界面可动性提升,马氏体临界再取向应力降低,形状记忆性能提高。  相似文献   

6.
快速凝固/粉末冶金法制备ZK60高强镁合金   总被引:1,自引:0,他引:1  
采用快速凝固/粉末冶金法(RS/PM)制备块体ZK60(Mg-5.52Zn-0.33Zr,质量分数/%)镁合金,研究了挤压态合金在200,300℃退火1h后微观组织和力学性能的变化.结果表明:挤压致密化过程中,合金粉末颗粒在剪切力作用下被拉长,内部晶粒碎化成小角度亚晶粒、位错胞和条带状亚晶,第二相纳米颗粒沿亚晶界随机分布;随后200℃退火后,组织发生不完全再结晶,位错密度有所降低;而在300℃退火后,合金组织发生完全再结晶,形成平均尺寸约2.5μm的等轴晶,同时晶内析出大量β2′相.挤压态合金的屈服强度和延伸率分别为394MPa,15.2%;随着退火温度的升高,强度略有下降,塑性提高,合金综合性能优异.  相似文献   

7.
研究了铸态、退火态、挤压态和T5时效态Mg-13Gd-1Zn三元合金的显微组织和力学性能。结果表明,合金的铸态组织由α-Mg、(Mg,Zn)3Gd和14H-LPSO长周期相组成。合金在均匀化退火和热挤压后的直接时效(T5)过程中都发生了晶内14H-LPSO相的沉淀析出,表明合金中14H-LPSO的沉淀相变发生在一个很宽的温度范围(200~510℃)。在挤压后合金的直接时效(T5)过程中发生了β'β1相的沉淀析出。在沉淀强化和LPSO强化的共同作用下,合金的屈服强度、抗拉强度和伸长率分别为197 MPa、397 MPa和2.56%。在200℃/80 MPa和200℃/120 MPa两种实验条件下,Mg-13Gd-1Zn合金的抗蠕变性能均优于WE54合金。  相似文献   

8.
系统地研究了退火处理温度对低熔点高熵合金Fe35Ni30Cr20Al10Nb5(摩尔比)的组织结构和性能的影响。结果表明:随着退火温度的提高,铸态Fe35Ni30Cr20Al10Nb5合金中富Fe-Cr元素的fcc相的体积分数逐渐减少,Laves相和B2-NiAl相的体积分数逐渐增大。准静态压缩实验结果表明,铸态样品的压缩塑性变形能力良好。随着退火处理温度的提高合金的屈服强度先提高后降低,在700℃退火的样品其屈服强度最高(为1247.7 MPa),但是塑性变形量比铸态有所降低。压缩屈服强度随退火处理温度降低,可归因于基体fcc相在高温下的分解。电化学测试结果表明,这种合金的耐腐蚀能力随退火处理温度的提高而单调提高,在900℃退火的样品其腐蚀电位为-72.02 mV。  相似文献   

9.
用激冷铸造法制备Al-5.5Mg-0.25Sc-0.04Ti合金,研究了在不同温度退火后其硬度随时间的变化,并用金相显微镜(OM)和透射电镜(TEM)研究了这种合金中Al3(Scx,Ti1-x)第二相粒子的存在形式和形成机制。结果表明:用急冷铸造法制备的Al-5.5Mg-0.25Sc-0.04Ti铸态合金中Sc和Ti原子主要以固溶的形式存在于α(Al)基体中,在电镜下很难观察到这些粒子。铸态合金在较低温度(低于250℃)下退火时其硬度提高得比较慢,退火较长时间才能出现硬度的峰值;而在比较高的温度(高于350℃)退火硬度提高得非常快,很快出现峰值。但是,硬度出现峰值后继续退火则大幅度降低;在300℃退火硬度的热稳定性比较高。硬度的变化,与次生Al3(Scx,Ti1-x)粒子的析出密切相关。在较低温度下次生Al3(Scx,Ti1-x)粒子的析出不充分且粒径较小,对晶界、亚晶界和位错的钉扎作用较弱;而在过高的温度下Al3(Scx,Ti1-x)粒子发生粗化,使合金的性能降低。  相似文献   

10.
为了提高Ti-6Al-4V合金的加工硬化率和塑性,基于其团簇成分式12[Al-Ti12](AlTi2)+5[Al-Ti14](V2Ti)设计成分式为4[Al-Ti12](AlTi2)+12[Al-Ti14](V2Ti)的(Ti-4.13Al-9.36V, %)合金,采用激光立体成形工艺制备Ti-4.13Al-9.36V和Ti-6.05Al-3.94V(对比合金),研究了沉积态和固溶温度对其显微组织和力学性能的影响。结果表明,沉积态Ti-4.13Al-9.36V和Ti-6.05Al-3.94V合金的显微组织均由基体外延生长的初生β柱状晶和晶内细小的网篮α板条组成。Ti-6.05Al-3.94V合金的初生β柱状晶的宽度约为770 μm,α板条的宽度约为0.71 μm;而Ti-4.13Al-9.36V合金的初生β柱状晶的宽度显著减小到606 μm,α板条的宽度约为0.48 μm。经920℃固溶-淬火处理后Ti-6.05Al-3.94V样品的显微组织为α'+α相,其室温拉伸屈服强度约为893 MPa,抗拉强度约为1071 MPa,延伸率约为3%。经750℃固溶-淬火处理后Ti-4.13Al-9.36V样品的显微组织为α'+α相,与α'马氏体相比,应力诱发的α'马氏体能显著地提高合金的加工硬化能力,其室温拉伸屈服强度约为383 MPa,抗拉强度约为 989 MPa,延伸率达到了17%。这表明,根据团簇理论模型调控α'+α的显微组织能有效提高激光立体成形Ti合金的加工硬化能力和塑性。  相似文献   

11.
使用电子背向散射衍射技术研究了预变形程度和变形温度对CoCrFeMnNi高熵合金的变形机制和后续再结晶行为的影响。结果表明,在低应变量条件下,变形温度对CoCrFeMnNi高熵合金的形变微观组织没有显著的影响,形变机制均以位错滑移为主导;在室温下变形,随着应变量的增大位错滑移和孪生变形共同主导变形。在低温退火条件下预变形程度对再结晶行为也没有显著的影响,难以发生再结晶。但是在高温退火条件下,变形程度的提高使再结晶晶粒显著细化和∑3晶界的比例大幅度提高。  相似文献   

12.
使用热力学软件设计了一种新型双相高熵合金(FeCoNiTi),利用真空电弧熔炼和热处理制备出FeCoNiTi高熵合金块体材料。表征结果表明,FeCoNiTi高熵合金由层状结构的Laves相和魏氏体板条FCC相组成。在室温下FeCoNiTi高熵合金具有良好的综合力学性能(抗压强度σb=2.08 GPa,压缩应变ε=20.3%)。高强度来自“硬”Laves相(层状结构)的强化,而“软”FCC相(魏氏体板条)中的位错滑移和变形孪晶提供塑性。  相似文献   

13.
利用透射电镜和场发射扫描电镜研究了两种不同Ru含量(3%和5%,质量分数)的第四代镍基单晶高温合金DD22在1130℃长期时效过程中γ′相形貌演化、TCP相析出和界面位错网的演化情况。研究结果表明:在完全热处理后5Ru合金比3Ru合金的γ′相尺寸更小,形状更规则,γ/γ′相界面的错配度更大,高Ru含量使合金Re,Mo等元素出现反分配现象;5Ru合金在1130℃长期时效过程中γ′相粗化速率、溶解速率和形筏速率均低于3Ru合金;5Ru合金在长期时效1000 h后仍没有TCP相析出,而3Ru合金在时效50 h后便析出TCP相,随着长期时效时间延长,TCP相数量增多,尺寸增大;与3Ru合金相比,长期时效1000 h后5Ru合金γ′/γ界面位错网更加致密和规则;综上所述,Ru的元素反分配作用和低的扩散系数使5Ru合金比3Ru合金表现出更高的组织稳定性。  相似文献   

14.
采用金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和电化学萃取相分析等手段,研究了V元素对GH4061合金晶粒度、碳化物和γ?/γ"强化相等影响,测试了不同V含量试样的室温和750℃拉伸性能以及750℃/460 MPa持久性能,分析了V元素对合金显微组织和力学性能的影响。结果表明:GH4061合金中添加V元素促进了MC型碳化物和γ?/γ"相析出,使晶粒尺寸小幅减小;V元素通过增大γ基体的晶格常数,降低γ基体与γ?相的错配度,抑制了γ?/γ"相在750℃的快速粗化;V元素添加对室温拉伸性能影响不大,但可显著提升750℃拉伸强度和持久寿命;当V含量为0.4%(质量分数)时,GH4061合金具有最佳的750℃持久性能。  相似文献   

15.
使用扫描电镜、电子背散射衍射、透射电子显微镜和固体内耗仪研究了温轧温度对Cr-Ti-B系低碳钢组织和织构的影响.结果 表明,温轧后钢的组织由变形铁素体和少量珠光体所组成,随着温轧温度的提高铁素体晶内剪切带的含量呈现先提高后降低的趋势,在450℃温轧剪切带的含量最高.剪切带的形成,与Ti和B元素的偏聚密切相关.在350℃...  相似文献   

16.
使用透射电镜(TEM)研究了Ti65合金在600~650℃、120~160 MPa条件下的蠕变变形行为及其微观变形机制。结果表明:初级蠕变变形机制主要由受攀移控制的位错越过α2相的过程主导;稳态蠕变阶段蠕变机制主要由受界面处扩散控制的位错攀移的过程主导,且应力指数为5~7。在初级蠕变阶段α2相与位错的相互作用是α2相对合金高温强化的主要方式,在稳态蠕变阶段沿α/β相界分布的硅化物阻碍位错运动与限制晶界滑移是硅化物对合金强化的主要方式。  相似文献   

17.
使用圆柱形TB6钛合金试样在Thermecmaster-Z型热模拟试验机上进行热模拟压缩实验(变形温度为825~1100℃,应变速率为0.001~1 s-1)。对采集的流变数据进行加工硬化率处理,确定动态再结晶体积分数,研究了TB6钛合金β区变形的动态再结晶动力学。结果表明,流变应力随着变形温度的降低或应变速率的提高而增大,流变曲线呈现出动态再结晶类型的特征。随着应变速率的降低和变形温度的提高,动态再结晶的体积分数和晶粒尺寸增大。在变形温度高于950℃、应变速率低于0.001 s-1条件下,动态再结晶的晶粒严重粗化。动态再结晶动力学曲线经历缓慢增加—快速增加—缓慢增加三个阶段,呈现出典型的“S”型特征。确定了动态再结晶的体积分数达到50%时的应变,建立了TB6钛合金的动态再结晶动力学模型。  相似文献   

18.
设计并制备了4%W/无Ru、6%W/无Ru以及6%W/2%Ru三种镍基单晶高温合金,通过蠕变性能测试、组织形貌观察、元素分布测定以及XRD谱线测定,研究Ru对一种高W镍基单晶合金蠕变性能的影响。结果表明,提高W含量会促进拓扑密堆相(TCP)析出,从而影响蠕变寿命,6%W/无Ru合金在1070℃/137 MPa条件下的蠕变寿命仅为58 h。元素Ru可改善元素W在γ/γ两相的浓度分布,高温蠕变期间元素Ru可抑制元素W由γ相向γ相扩散。6%W/2%Ru合金经高温蠕变无TCP相析出,其在1070℃/137 MPa条件下的蠕变寿命高达383 h。三种合金在高温蠕变期间,γ相均可形成垂直于应力轴方向的筏状结构,TCP相可破坏筏状结构的连续性,导致γ/γ两相扭折程度加剧,是6%W/无Ru合金蠕变寿命较低的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号