首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The synthesis of various nanoscale materials, such as nanoparticles, nanowires of Au, Pt, Ni Co, Fe, Ag etc., by electrodeposition techniques have been demonstrated in this article. Both potentiostatic and galvanostatic methods were employed to carry out the electrodeposition process under different potential ranges, time durations, and current densities. The electrochemical behavior of the deposited nanoparticles on various substrates was investigated by cyclic voltammetric and chronoamperometric techniques. The synthesis of mono-dispersed gold (Au) nanoparticles on indium tin oxide (ITO) coated glass, preparation of Au nanorods on nanoporous anodic alumina oxide (AAO), formation of Au nanoclusters on polypyrrole-modified glassy carbon electrode and one-step electrodeposition of nickel nanoparticle chains embedded in TiO2 etc. have been highlighted in this article. The potential applications of synthesized nanoparticles such as the role of maghemite (Fe2O3) in arsenic remediation, higher electrocatalytic activity of Ag nanoclusters for the reduction of benzyl chloride, and the role of C60 nanoparticle-doped carbon film in fabrication processes are also presented in this article.  相似文献   

2.
Wettability tests were performed for Cu, Ag, Au liquid drops on diamond substrates as well as measurements of mechanical contact strength (MCS) between solidified metal drops and diamond. The work of adhesion was calculated using data for metal surface tension and observed contact angles. Cu, Ag, Au (metals of the group IB of the Periodic Table) show non-monotonic changes of wettability and work of adhesion within their group in the sequence Au → Cu → Ag. The work of adhesion was found to be almost two times higher for Ag than for Cu and almost five times higher for Ag than for Au. Measured mechanical contact strength (MCS) was ~4 times higher, on average, for Ag/diamond samples than for Cu/diamond or Au/diamond samples. Maximum value of the MCS reached ~70 MPa for Ag/diamond samples. Non-monotonic changes of the wettability and work of adhesion observed for the group IB metals (Cu, Ag, Au) are discussed on the basis of classical London equation for the energy of van der Waals (vdW) bond for two atoms.  相似文献   

3.
The interaction of hydrogen with the close-packed facets of seventeen transition metals overlaid with 1 ML of five transition metals (Au, Ag, Cu, Pt, and Pd) has been studied using periodic self-consistent (GGA-PW91) density functional theory (DFT) calculations. For noble metal overlayers (Au, Ag, and Cu), hydrogen at the host-metal/overlayer interface (subsurface hydrogen) is more stable than subsurface hydrogen in the pure host. For certain Au and Ag overlayers, subsurface hydrogen is more stable than surface hydrogen in the same system. The presence of subsurface hydrogen was found to have a significant effect on the electronic structure of the overlayer, resulting in its modified surface reactivity.  相似文献   

4.
The catalytic behaviors of Ag, Cu, and Au loaded fumed SiO2 have been investigated for diesel soot oxidation. The diesel soot generated by burning pure Mexican diesel in laboratory was oxidized under air flow in presence of catalyst inside a tubular quartz reactor in between 25 and 600 °C. UV–Vis optical spectroscopy was utilized to study the electronic states of Ag, Cu, and Au(M) in M/SiO2 catalysts. The soot oxidation was seen to be strongly enhanced by the presence of metallic silver on 3 % Ag/SiO2 surface, probably due to the formation of atomic oxygen species during the soot oxidation process. The catalyst is very stable due to the stability of Ag0 species on the catalyst surface and high thermal stability of SiO2. Obtained results reveal that though the freshly prepared 3 % Cu/SiO2 is active for soot oxidation, it gets deactivated at high temperatures in oxidizing conditions. On the other hand, 3 % Au/SiO2 catalyst does not present activity for diesel soot oxidation in the conventional soot oxidation temperature range. The catalytic behaviors of the supported catalyst samples have been explained considering the electron donating ability of the metals to generate atomic oxygen species at their surface.  相似文献   

5.
Au, Ag and Au–Ag catalysts on different supports of alumina, titania and ceria were studied for their catalytic activity of ethylene oxidation reactions. An addition of an appropriate amount of Au on Ag/Al2O3 catalyst was found to enhance the catalytic activity of the ethylene epoxidation reaction because Au acts as a diluting agent on the Ag surface creating new single silver sites which favor molecular oxygen adsorption. The Ag catalysts on both titania and ceria supports exhibited very poor catalytic activity toward the epoxidation reaction of ethylene, so pure Au catalysts on these two supports were investigated. The Au/TiO2 catalysts provided the highest selectivity of ethylene oxide with relatively low ethylene conversion whereas, the Au/CeO2 catalysts was shown to favor the total oxidation reaction over the epoxidation reaction at very low temperatures. In comparisons among the studied catalysts, the bimetallic Au–Ag/Al2O3 catalyst is the best candidate for the ethylene epoxidation. The catalytic activity of the gold catalysts was found to depend on the support material and catalyst preparation method which govern the Au particle size and the interaction between the Au particles and the support.  相似文献   

6.
Noble-metal nanocages comprise a novel class of nanostructures possessing hollow interiors and porous walls. They are prepared using a remarkably simple galvanic replacement reaction between solutions containing metal precursor salts and Ag nanostructures prepared through polyol reduction. The electrochemical potential difference between the two species drives the reaction, with the reduced metal depositing on the surface of the Ag nanostructure. In our most studied example, involving HAuCl(4) as the metal precursor, the resultant Au is deposited epitaxially on the surface of the Ag nanocubes, adopting their underlying cubic form. Concurrent with this deposition, the interior Ag is oxidized and removed, together with alloying and dealloying, to produce hollow and, eventually, porous structures that we commonly refer to as Au nanocages. This approach is versatile, with a wide range of morphologies (e.g., nanorings, prism-shaped nanoboxes, nanotubes, and multiple-walled nanoshells or nanotubes) available upon changing the shape of the initial Ag template. In addition to Au-based structures, switching the metal salt precursors to Na(2)PtCl(4) and Na(2)PdCl(4) allows for the preparation of Pt- and Pd-containing hollow nanostructures, respectively. We have found that changing the amount of metal precursor added to the suspension of Ag nanocubes is a simple means of tuning both the composition and the localized surface plasmon resonance (LSPR) of the metal nanocages. Using this approach, we are developing structures for biomedical and catalytic applications. Because discrete dipole approximations predicted that the Au nanocages would have large absorption cross-sections and because their LSPR can be tuned into the near-infrared (where the attenuation of light by blood and soft tissue is greatly reduced), they are attractive materials for biomedical applications in which the selective absorption of light at great depths is desirable. For example, we have explored their use as contrast enhancement agents for both optical coherence tomography and photoacoustic tomography, with improved performance observed in each case. Because the Au nanocages have large absorption cross-sections, they are also effective photothermal transducers; thus, they might provide a therapeutic effect through selective hyperthermia-induced killing of targeted cancer cells. Our studies in vitro have illustrated the feasibility of applying this technique as a less-invasive form of cancer treatment.  相似文献   

7.
凌绍明  沈文闻  隆金桥 《化学世界》2003,44(12):622-625
以银原子团簇作晶种,采用微波高压液相合成法制备了分散性好、规则球形的(Ag)核·(Au)壳复合纳米粒子。研究了(Ag)核·(Au)壳复合纳米粒子的紫外可见吸收光谱和共振散射光谱特性。结果表明,液相(Ag)核·(Au)壳复合纳米粒子和高压微波合成的液相金纳米粒子的最强共振散射峰均在580nm处,它们的吸收光谱图相似,最大吸收分别在518.5nm和524.8nm。  相似文献   

8.
We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1?:?1 molar ratio reaction mixture of Au(QC)@BSA and Ag(QC)@BSA suggested that the alloy clusters could be Au(38-x)Ag(x)@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ~1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different steady state and time resolved excited state luminescence profiles compared to the parent clusters. Tuning of the alloy composition was achieved by varying the molar ratio of the parent species in the reaction mixture and compositional changes were observed by mass spectrometry. In another approach, mixing of Au(3+) ions with the as-synthesized Ag(QC)@BSA also resulted in the formation of alloy clusters through galvanic exchange reactions. We believe that alloy clusters with the combined properties of the constituents in versatile protein templates would have potential applications in the future. The work presents interesting aspects of the reactivity of the protein-protected clusters.  相似文献   

9.
The electrodeposition of a Ag/Cd ultrathin film on a Au(1 1 1) surface and the formation of a surface alloy during this process have been studied using classical electrochemical techniques and in situ Scanning Tunneling Microscopy (STM). The films were obtained from separate electrolytes containing Ag+ or Cd2+ ions and from a multicomponent solution containing both ions. First, the polarization conditions were adjusted in order to form a Ag film by overpotential deposition. Afterwards, a Cd monolayer was formed onto this Au(1 1 1)/Ag modified surface by underpotential deposition. The voltammetric behavior of the Cd UPD and the in situ STM images indicated that the ultrathin Ag films were uniformly deposited and epitaxially oriented with respect to the Au(1 1 1) surface. Long time polarization experiments showed that a significant Ag-Cd surface alloying accompanied the formation of the Cd monolayer on the Au(1 1 1)/Ag modified surface, independent of the Ag film thickness. In the case of an extremely thin Ag layer (1 Ag ML) the STM images and long time polarization experiments revealed a solid state diffusion process of Cd, Ag, and Au atoms which can be responsible for the formation of different Ag-Cd or Au-Ag-Cd alloy phases.  相似文献   

10.
概述了金、银、铂、钯回收提纯的有关化学反应原理,拟定了从铂钯精矿中回收金、银、铂、钯的工艺流程,采用硫酸化焙烧,酸浸除贱金属,富集贵金属,再氯化分别提取贵金属,获得了满意的生产指标,金属回收率分别为:Au 98.1%,Ag97.2%,Pt93.0%,Pd95.6%.  相似文献   

11.
由具有表面等离子体共振(surface plasmon resonance,SPR)效应的贵金属(Ag、Au等)纳米粒子和半导体纳米结构组成的纳米复合光催化剂具有优异的可见光光催化活性,成为新型光催化材料的研究热点之一。本文综述了Ag(Au)/半导体纳米复合光催化剂的制备方法、基本性质以及光催化应用方面的一些重要研究进展;重点介绍了Ag(Au)等纳米粒子的表面等离子共振增强可见光催化活性的机理,以及Ag(Au)纳米粒子与不同类型半导体复合的光催化剂的光催化性能,其中所涉及的半导体包括金属氧化物、硫化物和其他一些半导体;本领域未来几年的研究热点将集中于新型高效的Ag(Au)/半导体纳米复合光催化剂的微结构调控及其用于可见光驱动有机反应的机理研究。本文为基于SPR效应构建Ag(Au)/半导体纳米复合光催化剂的研究提供了有力的参考依据,并且指出Ag(Au)/半导体纳米复合光催化剂的研究是发展可见光高效光催化剂的重要方向。  相似文献   

12.
The following gold(I) and silver(I) complexes of the tritertiary phosphine 1,1,1- tris(diphenylphosphinomethyl)ethane, tripod , have been synthesised: Au(3)(tripod)X(3) [X = Cl(1), Br(2), I(3)]; [Au(3)(tripod)(2)Cl(2)]Cl (4); Au(tripod)X [X = Br(5), I(6)]; Ag(3)(tripod) (NO(3))(4) (7), Ag(tripod)NO(3) (8). They were characterized by X-ray diffraction (complexes 2, 3 and 4), (31)P NMR spectroscopy, electrospray and FAB mass spectrometry and infrared spectroscopy. Complexes 2 and 3 show a linear coordination geometry for Au(I), with relatively short Au-P bond distances. Complex 3 has a Au***Au intramolecular distance of 3.326 A degrees , while complex 2 had a short Au***Au intermolecular interaction of 3.048 A degrees . Complexes 4-6 were found by (31)P NMR spectroscopy studies to contain a mixture of species in solution, one of which crystallised as [Au(3)(tripod|)(2)Cl(2)]Cl which was shown by X-ray diffraction to contain both tetrahedral and linear Au(I), the first example of a Au(I) complex containing such a mixture of geometries. The reaction of [Au(3) (tripod)Cl(3)] (1) with tripod led successfully to the formation of [Au(3)(tripod|)(2)Cl(2)](+) and [Au(3)(tripod)(2)Cl(3)](+) and [Au(3)(tripod|)(3)Cl](2+). The silver(I) complexes, 7 and 8 appear to contain linear and tetrahedral Ag(I), respectively.  相似文献   

13.
Bimetallic, initially spherical Ag/Au nanoparticles in glass prepared by ion implantation have been irradiated with intense femtosecond laser pulses at intensities still below the damage threshold of the material surface. This high-intensity laser processing produces dichroism in the irradiated region, which can be assigned to the observed anisotropic nanoparticle shapes with preferential orientation of the longer particle axis along the direction of laser polarization. In addition, the particle sizes have considerably been increased upon processing.  相似文献   

14.
Structural characterization by transmission electron microscopy of metal nanoparticle coatings on oxide nanospheres has been employed to point out the potential of such materials for use as porous support model catalysts. On silica and titania nanospheres of various origins surface-mediated metal deposition at mild temperature conditions has been utilized to fabricate Pt, Pd, Ag, and Au nanoparticle coatings on the oxide supports. Promising coating characteristics have been achieved for Ag and Au nanoparticles by direct reduction on terminating hydroxyl-rich St?ber silica. A high-resolution electron microscopy analysis directed to surface stress, lattice contraction and planar lattice defects of the latter particles revealed no strong metal-support interaction.  相似文献   

15.
Polavarapu L  Manga KK  Yu K  Ang PK  Cao HD  Balapanuru J  Loh KP  Xu QH 《Nanoscale》2011,3(5):2268-2274
We report a facile and general method for the preparation of alkylamine capped metal (Au and Ag) nanoparticle "ink" with high solubility. Using these metal nanoparticle "inks", we have demonstrated their applications for large scale fabrication of highly efficient surface enhanced Raman scattering (SERS) substrates by a facile solution processing method. These SERS substrates can detect analytes down to a few nM. The flexible plastic SERS substrates have also been demonstrated. The annealing temperature dependent conductivity of the nanoparticle films indicated a transition temperature above which high conductivity was achieved. The transition temperature could be tailored to the plastic compatible temperatures by using proper alkylamine as the capping agent. The ultrafast electron relaxation studies of the nanoparticle films demonstrated that faster electron relaxation was observed at higher annealing temperatures due to stronger electronic coupling between the nanoparticles. The applications of these highly concentrated alkylamine capped metal nanoparticle inks for the printable electronics were demonstrated by printing the oleylamine capped gold nanoparticles ink as source and drain for the graphene field effect transistor. Furthermore, the broadband photoresponse properties of the Au and Ag nanoparticle films have been demonstrated by using visible and near-infrared lasers. These investigations demonstrate that these nanoparticle "inks" are promising for applications in printable SERS substrates, electronics, and broadband photoresponse devices.  相似文献   

16.
The optical properties of foreign metal submonolayers formed on Au, Ag, Cu, Pt and Pd electrodes through the underpotential deposition have been investigated by specular reflectivity measurement. Based on the spectral characteristics, 14 adsorbate-substrate systems were classified into 2 groups. The first group, involving Bi on Au, Cu on Au, Pb on Au, Tl on Au, Tl on Ag and Cd on Cu, is characterized by the similarity of the optical properties of the adsorbed metal in the submonolayer to those of bulk metal. The first monolayer was found to form through several submonolayer stages, in which the optical constants are slightly different from each other. In the second group, involving Cd on Au, In on Au, Sn on Au, Ag on Pt, Bi on Pt, Cu on Pt, Pb on Pt and Bi on Pd, the spectra of submonolayer observed experimentally differ from those calculated with the assumption that the optical properties of adatom and substrate are the same as those of corresponding bulk metal. The difference in the work functions between adsorbate and substrate materials in this group is larger than those in the first group.From these findings, some considerations were made to interpret the origin of the specular reflectance change due to the presence of metal adlayer on the electrode surface. The results allow a tentative conclusion that the reflectivity change is predominantly attributed to the optical properties of the adsorbed submonolayer, but at the same time the work function of the substrate and the interband transition in visible should also be taken into consideration.  相似文献   

17.
采用吸附相反应技术,以硅胶为载体,Ni(OH)2为修饰组分,在水/乙醇体系中制备得到了Au、Ag以及Au-Ag 双金属负载型催化剂.通过X射线衍射(XRD),透射电子显微镜(TEM),紫外-可见漫反射光谱(UV-Vis diffuse-reflectance spectra)等手段对催化剂进行了表征,结果表明Au,Ag...  相似文献   

18.
Gold nanoclusters have the tunable optical absorption property, and are promising for cancer cell imaging, photothermal therapy and radiotherapy. First-principle is a very powerful tool for design of novel materials. In the present work, structural properties, band gap engineering and tunable optical properties of Ag-doped gold clusters have been calculated using density functional theory. The electronic structure of a stable Au(20) cluster can be modulated by incorporating Ag, and the HOMO-LUMO gap of Au(20-) (n)Ag(n) clusters is modulated due to the incorporation of Ag electronic states in the HOMO and LUMO. Furthermore, the results of the imaginary part of the dielectric function indicate that the optical transition of gold clusters is concentration-dependent and the optical transition between HOMO and LUMO shifts to the low energy range as the Ag atom increases. These calculated results are helpful for the design of gold cluster-based biomaterials, and will be of interest in the fields of radiation medicine, biophysics and nanoscience.  相似文献   

19.
The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm. The enhanced fluorescence is observed in the presence of Ag nanowire and Au nanofilm, which is attributed to the excitation of surface plasmon polariton resonance of Ag nanowire and Au nanofilm. The gold nanofilm is proven to be very effective fluorescence resonance energy transfer donors. The fabricated novel structure, gold ultrathin continuous nanofilm, possesses high surface plasmon resonance properties and prominent fluorescence enhancement effect. Therefore, the ultrathin continuous gold nanofilm is an active substrate on nanoparticle-enhanced fluorescence.  相似文献   

20.
We describe a simple method for decorating graphene (1–5 layers) with Au and Ag nanostructures (nanoparticles, nanorods, and nanoplates). We deposit graphene electrostatically from highly-oriented pyrolytic graphite onto Si/SiO2 surfaces functionalized with (aminopropyl)trimethoxysilane and grow the metal nanostructures by a seed-mediated growth method from hexanethiolate-coated Au monolayer-protected cluster “seeds” that are attached to graphene by hydrophobic interactions. Scanning electron microscopy reveals the selective growth of Au or Ag nanostructures on the graphene surface. In the case of Au, the low pH 2.8 growth solution causes etching of the graphene and formation of scroll-like structures. For Ag, the high pH 9.3 solution does not seem to affect the graphene. Raman spectroscopy is consistent with the graphene morphology and reveals that the presence of Au and Ag nanostructures increases the Raman scattering from the graphene by a factor of about 45 and 150, respectively. This work demonstrates a simple method for decorating graphene with noble metal nanostructures that may have interesting optical, electronic, and chemical properties for applications in nanoelectronics, sensing, and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号