首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 343 毫秒
1.
为了消除影像中的大气影响,反演地表真实反射率,需要进行大气校正。6S是通用的大气校正模型之一,但是对于覆盖面积较广、下垫面较复杂的影像,若用平均的气溶胶厚度和高程参数来对影像进行校正,将出现较大误差。提出了建立一种基于6S模型,以高程或气溶胶厚度为参数的大气校正模型与方法,并以广州LandsatETM+为例,对校正前后的反射率直方图、NDVI灰度直方图以及各类地物的光谱特征进行分析。结果证明了该方法简单实用,校正精度高,可直接用于该地区相似气候条件下影像的大气校正,对类似的研究有借鉴意义。  相似文献   

2.
水体光谱信息微弱,常用的基于辐射传输模型的大气校正方法在水体中校正精度较差。基于覆盖太湖水体的2016年4月29日的高分一号宽幅相机影像(GF-1/WFV)和同步的实测光谱数据,对6S辐射传输模型的输入参数进行敏感性分析,逐像元计算观测几何,使用分区气溶胶类型、分区暗像元和Spline插值确定的气溶胶光学厚度(Aerosol Optical Depth,AOD)进行6S逐像元大气校正。实验结果表明:气溶胶模式对6S大气校正结果的影响最大,与FLAASH方法相比,逐像元计算观测几何和气溶胶参数的校正方法对大气校正精度有改进作用,4个波段的平均相对误差分别降低了1.84%、7.78%、4.79%和17%。结合精确大气参数输入的6S逐像元大气校正方法可以改进水体表面遥感反射率的大气校正精度。  相似文献   

3.
基于大气校正中常用的大气辐射传输模拟软件6S模型,探讨了不同气溶胶模型对卫星影像大气校正的影响及其适用性问题。选取我国环境小卫星星座HJ\|1的CCD传感器数据,以天津地区大气污染和较清洁条件下的卫星影像为例,基于6S进行大气校正,定量估算了气溶胶模型选取对大气校正精度的影响。与此同时,通过地面太阳-天空辐射计实测,获得研究区域整层大气气溶胶参数进行大气校正,并与基于气溶胶模型的校正结果进行对比,得到以下结论:①6S气溶胶模型中,大陆型与海洋型的校正结果比较接近,而城市型气溶胶模型由于含有较高的煤烟成分比例,其校正结果与前两种相差较大;②天津地区在大气污染情况下,适合应用大陆型气溶胶模型进行大气校正,而在大气较清洁的情况下可选择海洋型气溶胶模型。
  相似文献   

4.
遥感影像受大气的吸收散射以及地形起伏变化的影响,使得传感器接收到的辐射信号既包含了地物的信息,同时也包含了大气以及地形的信息。为了提高地表反射率的反演精度,需要去除遥感影像中大气和地形的影响。提出了一种基于查找表的Landsat8-OLI遥感影像的大气校正方法,该方法由6S辐射传输模型生成查找表,其中输入的参数包括大气水蒸汽含量、臭氧浓度和气溶胶光学厚度等MODIS大气参数产品。利用传统方法建立的大气参数查找表通常只考虑一部分因素,这对于以MODIS产品为输入参数的大气校正是不适用的。本文建立了一个包括大部分输入参数的高维大气校正查找表,对于Landsat-8 OLI传感器具有很高的通用性,通过进行光谱分析、与USGS地表反射率产品交叉验证等方式来验证模型的精度。验证结果表明该方法能有效地反演精确可靠的地表反射率。最后,采用目视解译、统计分析将校正结果与SEVI做对比分析,比较地形影响消减的效果。结果表明该模型与SEVI在地形消减的效果上作用相当。  相似文献   

5.
遥感影像受大气的吸收散射以及地形起伏变化的影响,使得传感器接收到的辐射信号既包含了地物的信息,同时也包含了大气以及地形的信息。为了提高地表反射率的反演精度,需要去除遥感影像中大气和地形的影响。提出了一种基于查找表的Landsat8-OLI遥感影像的大气校正方法,该方法由6S辐射传输模型生成查找表,其中输入的参数包括大气水蒸汽含量、臭氧浓度和气溶胶光学厚度等MODIS大气参数产品。利用传统方法建立的大气参数查找表通常只考虑一部分因素,这对于以MODIS产品为输入参数的大气校正是不适用的。本文建立了一个包括大部分输入参数的高维大气校正查找表,对于Landsat-8 OLI传感器具有很高的通用性,通过进行光谱分析、与USGS地表反射率产品交叉验证等方式来验证模型的精度。验证结果表明该方法能有效地反演精确可靠的地表反射率。最后,采用目视解译、统计分析将校正结果与SEVI做对比分析,比较地形影响消减的效果。结果表明该模型与SEVI在地形消减的效果上作用相当。  相似文献   

6.
遥感影像受大气的吸收散射以及地形起伏变化的影响,使得传感器接收到的辐射信号既包含了地物的信息,同时也包含了大气以及地形的信息。为了提高地表反射率的反演精度,需要去除遥感影像中大气和地形的影响。提出了一种基于查找表的Landsat8-OLI遥感影像的大气校正方法,该方法由6S辐射传输模型生成查找表,其中输入的参数包括大气水蒸汽含量、臭氧浓度和气溶胶光学厚度等MODIS大气参数产品。利用传统方法建立的大气参数查找表通常只考虑一部分因素,这对于以MODIS产品为输入参数的大气校正是不适用的。本文建立了一个包括大部分输入参数的高维大气校正查找表,对于Landsat-8 OLI传感器具有很高的通用性,通过进行光谱分析、与USGS地表反射率产品交叉验证等方式来验证模型的精度。验证结果表明该方法能有效地反演精确可靠的地表反射率。最后,采用目视解译、统计分析将校正结果与SEVI做对比分析,比较地形影响消减的效果。结果表明该模型与SEVI在地形消减的效果上作用相当。  相似文献   

7.
为探讨FLAASH大气校正模型对高程和大气模式参数的敏感性,以中纬度夏季和亚极地夏季大气模式过渡区的两景Landsat8 OLI遥感影像为基础,从高程、大气模式及其综合作用进行了对比分析。实验结果表明:①单景影像而言,FLAASH模型与高程和两种大气模式敏感性不强,各波段反射率平均值相差在0.21%以内;②在相邻两景影像重叠区,FLAASH模型与高程和大气模式敏感性明显加强,可见光波段反射率均值相差在0.5%~1.29%之间;③FLAASH模型能有效去除Landsat8影像的大气影响,并使图像信息增强,大气校正的作用效果在短波波段更加明显。
  相似文献   

8.
基于高程分层方法的HJ-1B CCD2影像大气校正   总被引:1,自引:0,他引:1  
大气校正是从环境一号B星(HJ\|1B)CCD2多光谱卫星数据中精确提取地面定量信息的关键一步。采用一种基于高程分层和改进的浓密植被算法,即将整个研究区按照高程间隔0.1 km划分为17个子区域,在不同高程带内利用红波段与短波红外波段(1.6 μm)的线性关系估计出红波段的反射率,然后利用估计的红波段反射率与其表观反射率差值的均值,结合6S辐射传输模型模拟计算得到0.55 μm处的气溶胶光学厚度,从而实现各个波段大气校正。比较分析校正前后成熟林地、水体和裸土的光谱反射率和标准反射率,结果表明:该方法对HJ-1B CCD2数据大气校正可取得较好的效果。  相似文献   

9.
卫星遥感影像数据的地形影响校正   总被引:6,自引:2,他引:6  
武瑞东 《遥感信息》2005,(4):31-34,i0001
地形影响校正是遥感影像辐射校正的主要内容,是获得地表真实反射率的必不可少的一步。本文提出的方法中,将6S大气校正模型与数字高程模型(DEM)结合起来,计算出水平地面上接收到的直接辐射与漫射辐射,并采用一个简单公式将其转化到地形坡面上,从而实现了对地面的辐射能量校正,同时,6S模型对卫片还进行了大气改正,可输出卫片在大气层底部的辐射亮度与反射率;然后将基于坡面的反射率换算到其在水平面上的对应值,即实现了对反射率的地形影响校正。在我们所实施的“滇金丝猴保护项目”的植被研究中,应用本方法对梅里雪山区域的ETM+影像进行了校正,大大减小了地形对遥感数据的附加影响。  相似文献   

10.
针对高光谱数据大气校正耗时长和查找表构建不准确等问题,提出基于MODTRAN辐射传输模型实时创建大气校正参数查找表的方法,并应用于水体叶绿素浓度反演。首先,基于高光谱数据实时构建大气校正参数查找表;其次,根据循环迭代反演得到水汽含量和气溶胶光学厚度对查找表插值得到各个波段的大气校正参数,从而完成所有波段数据的大气校正;最后,选择植被、土壤和水体3类典型地物精度分析,并基于反演水体的叶绿素a浓度验证大气校正精度的可靠性。实验结果表明:该方法明显优于6S、FLAASH等大气校正方法;在运行效率上,在多线程并行加速后,运行效率提升了2~4倍;基于水体反射率数据反演水体叶绿素a浓度,反演模型预测集验证中ρ为0.804 7,RMSE为1.8。  相似文献   

11.
The spectral information of water is weak, and the commonly used radiation transfer model has poor accuracy in atmospheric correction of water body. Based on the Gaofen-1 WFV image (GF-1/WFV) and the synchronous in situ spectra covering Taihu Lake on 29th, April, 2016, the sensitivity analysis of the input parameters in 6S model was first performed, and then the image was corrected using 6S model using the observation geometry calculated pixel-by-pixel, the partitioned aerosol type and the Aerosol Optical Depth (AOD) determined by the partitioned dark pixel and Spline interpolation. The experimental results show that the aerosol type has the greatest influence on the 6S atmospheric correction results. Compared with the FLAASH method, the 6S method using the observation geometry and aerosol parameters calculated pixel-by-pixel significantly improved the atmospheric correction accuracy, with the ARE (Average Relative Error) of the four bands reduced by 1.84%,7.78%,4.79%,17%. The 6S atmospheric correction method pixel by pixel with the input of accurate atmospheric parameters can improve the correction accuracy of the remote sensing reflectance above water surface.  相似文献   

12.
TM遥感影像的地形辐射校正研究   总被引:2,自引:0,他引:2  
从地面所接收到的太阳直接辐射、天空散射辐射和临近地形反射附加的辐射三个方面分析计算地面每个像元的太阳总辐射,并在此基础上建立地表真实反射率恢复模型,实现对地形的辐射校正。在算法实现上,采用交互式数据语言(Interactive Data Language,IDL),结合6S大气校正模型和数字高程模型(DEM)进行编程实现。利用北京山区的TM遥感影像所做的实验表明该方法能有效地消除卫星影像中地形的影响,为影像的后续处理提供更真实的信息。  相似文献   

13.
An innovative method for the determination of aerosol optical thickness (AOT) and surface reflectance for operational use of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) visible to near-infrared data is presented. This method is designed to obtain the atmospheric parameters needed in the correction of the image. This method is based on a simplified radiative transfer equation describing the relation between the ground surface reflectance, AOT and top-of-atmosphere reflectance. By exploiting the ASTER dual-angle view capabilities in band 3N (Nadir) and band 3B (Backwards), surface reflectance and AOT can be retrieved synchronously. Thus, it solves the problem of separating atmospheric radiance from the transmitted radiance of the surface to some extent. After applying this new atmospheric correction method to three areas of ASTER images, Beijing urban city, the Heihe River Basin and Hong Kong of China, ASTER surface reflectance products (AST07) were obtained. AOT values from in situ measurements of CIMEL Electronique 318 Sun Photometers or AERONET (AErosol RObotic NETwork) and surface reflectance in situ measured using an Analytical Spectral Device (ASD) Field Spec spectral radiometer are used for validation. AOT derived from the new method is consistent with in situ station measurements from CIMEL Electronique 318 Sun Photometer and level 2.0 data from AERONET, with correlation coefficient (R 2) of 0.98 and root mean square error of 0.05, whereas Multi-angle Imaging Spectroradiometer AOT products underestimate AERONET AOT and Moderate-Resolution Imaging Spectroradiometer AOT products overestimate AERONET AOT in these regions. More encouraging is the comparison between the corrected surface reflectance, AST07 and ASD measurements. Root mean square error of AST07 and retrieved surface reflectance are as follows: band 1 (556 nm) = 0.04 and 0.05; band 2 (661 nm) = 0.036 and 0.035; band 3 (807 nm) = 0.056 and 0.038, which suggests that compared with AST07 in bands 2 and 3, retrieved surface reflectance has better agreement with measured reflectance from ASD.  相似文献   

14.
Detecting and characterizing continuous changes in early forest succession using multi-temporal satellite imagery requires atmospheric correction procedures that are both operationally reliable, and that result in comparable units (e.g., surface reflectance). This paper presents a comparison of five atmospheric correction methods (2 relative, 3 absolute) used to correct a nearly continuous 20-year Landsat TM/ETM+ image data set (19-images) covering western Oregon (path/row 46/29). In theory, full absolute correction of individual images in a time-series should effectively minimize atmospheric effects resulting in a series of images that appears more similar in spectral response than the same set of uncorrected images. Contradicting this theory, evidence is presented that demonstrates how absolute correction methods such as Second Simulation of the Satellite Signal in the Solar Spectrum (6 s), Modified Dense Dark Vegetation (MDDV), and Dark Object Subtraction (DOS) actually make images in a time-series somewhat less spectrally similar to one another. Since the development of meaningful spectral reflectance trajectories is more dependant on consistent measurement of surface reflectance rather than on accurate estimation of true surface reflectance, correction using image pairs is also tested. The relative methods tested are variants of an approach referred to as “absolute-normalization”, which matches images in a time-series to an atmospherically corrected reference image using pseudo-invariant features and reduced major axis (RMA) regression. An advantage of “absolute-normalization” is that all images in the time-series are converted to units of surface reflectance while simultaneously being corrected for atmospheric effects. Of the two relative correction methods used for “absolute-normalization”, the first employed an automated ordination algorithm called multivariate alteration detection (MAD) to statistically locate pseudo-invariant pixels between each subject and reference image, while the second used analyst selected pseudo-invariant features (PIF) common to the entire image set. Overall, relative correction employed in the “absolute-normalization” context produced the most consistent temporal reflectance response, with the automated MAD algorithm performing equally as well as the handpicked PIFs. Although both relative methods performed nearly equally in terms of observed errors, several reasons emerged for preferring the MAD algorithm. The paper concludes by demonstrating how “absolute-normalization” improves (i.e., reduces scatter in) spectral reflectance trajectory models used for characterizing patterns of early forest succession.  相似文献   

15.
In order to obtain high quality data, the correction of atmospheric perturbations acting upon land surface reflectance measurements recorded by a space-based sensor is an important topic within remote sensing. For many years the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer model and the Simplified Method for Atmospheric Correction (SMAC) codes have been used for this atmospheric correction, but previous studies have shown that in a number of situations the quality of correction provided by the SMAC is low. This paper describes a method designed to improve the quality of the SMAC atmospheric correction algorithm through a slight increase in its computational complexity. Data gathered from the SEVIRI aboard Meteosat Second Generation (MSG) is used to validate the additions to SMAC, both by comparison to simulated data corrected using the highly accurate 6S method and by comparison to in-situ and 6S corrected SEVIRI data gathered for two field sites in Africa. The additions to the SMAC are found to greatly increase the quality of atmospheric correction performed, as well as broaden the range of atmospheric conditions under which the SMAC can be applied. When examining the Normalised Difference Vegetation Index (NDVI), the relative difference between SMAC and in-situ values decreases by 1.5% with the improvements in place. Similarly, the mean relative difference between SMAC and 6S reflectance values decreases by a mean of 13, 14.5 and 8.5% for Channels 1, 2 and 3 respectively. Furthermore, the processing speed of the SMAC is found to remain largely unaffected, with only a small increase in the time taken to process a full SEVIRI scene. Whilst the method described within this paper is only applicable to SEVIRI data, a similar approach can be applied to other data sources than SEVIRI, and should result in a similar accuracy improvement no matter which instrument supplies the original data.  相似文献   

16.
Earth observation data acquired in the optical region require atmospheric correction before they can be used quantitatively. Most operational methods of atmospheric correction assume that the atmospheric properties are uniform across the image, but this assumption is unlikely to be valid for large images. This study aims to characterize the spatial variation in atmospheric properties over a typical mid-latitude area (southern England), and to assess the errors that would result from applying a scene-based atmospheric correction to data collected under this variable atmosphere. Two key atmospheric properties – aerosol optical thickness (AOT) and precipitable water content (PWC) – are assessed over two clear days in June 2006, and results show an AOT range of approximately 0.1–0.5 and a PWC range of 1.5–3.0 cm. Radiative transfer modelling shows that errors in reflectance of up to 1.7 percentage points, and up to a 5% change in normalized difference vegetation index, can be caused by AOT variability, but that PWC variability has minimal effects. Sensitivity analyses also show that the high uncertainty of many data sources used to provide AOT values for atmospheric correction may also lead to significant errors in the resulting products. The spatial variability of the atmosphere cannot be ignored, and we are in need of operational, generic methods to perform a spatially variable atmospheric correction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号